首页> 外文期刊>RSC Advances >Heterocyclic aminopyrazine–reduced graphene oxide coated carbon cloth electrode as an active bio-electrocatalyst for extracellular electron transfer in microbial fuel cells
【24h】

Heterocyclic aminopyrazine–reduced graphene oxide coated carbon cloth electrode as an active bio-electrocatalyst for extracellular electron transfer in microbial fuel cells

机译:杂环氨基甲酰胺 - 将氧化物涂覆的碳布电极作为微生物燃料电池细胞外电子转移的活性生物电催化剂

获取原文
           

摘要

In the present study, a low molecular heterocyclic aminopyrazine (Apy)–reduced graphene oxide (r-GO) hybrid coated carbon cloth (r-GO–Apy–CC) was employed as an active and stable bio-electro catalyst in a microbial fuel cell (MFC). The presence of imine (–NH–) and pyridinic (–NC–) functional groups on the r-GO–Apy–CC electrode plays a critical role in the formation of bacterial colonization and enhanced extracellular electron transfer (EET) over a considerable period. The bacterial colonization over the r-GO–Apy–CC electrode was investigated in a Sacrificial Electrode Mode Reactor (SEMR) in which attached bacterial density with extracellular polysaccharides was monitored over a period. Simultaneously, cyclic voltammetry (CV) was performed in a bioelectrochemical system (BES) reactor, resulting in an increased current density–voltage response from 0.27 mA cm ~(?2) to 1.84 mA cm ~(?2) over a period of time. In addition, when r-GO–Apy–CC was employed as an anode in MFC, the power density was nearly two times (1253 mW m ~(?2) ) than that of the MFC employed with plain carbon cloth (PCC) (663.7 mW m ~(?2) ) at a steady state condition. It was proposed that the combined effect of Apy hybridized with nanostructured r-GO provides a large surface area for bacterial colonization. Moreover, the high bioelectrocatalytic activity was attributed to the low molecular nature of the Apy, which incorporated well into the EET pathway of the exoelectrogens by a redox mechanism.
机译:在本研究中,低分子杂环氨基吡嗪(APY) - 氢氧化烯氧化物(R-GO)杂化涂覆的碳布(R-GO-APY-CC)作为在微生物燃料中的活性和稳定的生物电催化剂中细胞(MFC)。 R-Go-APY-CC电极上的亚胺(-NH-)和吡啶(-NC-)官能团在形成细菌定植和增强的细胞外电子转移(EET)中在相当长的时间内发挥着关键作用。在牺牲电极模式反应器(SEMR)中研究了R-GO-APY-CC电极上的细菌定植,在该牺牲电极模式反应器(SEMR)中,在一段时间内监测附着的细菌密度与细胞外多糖。同时,在生物电化学系统(BES)反应器中进行循环伏安法(CV),在一段时间内从0.27 mA cm〜(Δ2)增加到1.84 mA cm〜(Δ2)的电流密度 - 电压响应增加。另外,当R-Go-APY-CC作为MFC中的阳极使用时,功率密度几乎是与用普通碳布(PCC)采用的MFC(1253mW)(1253mWM〜(Δ2))( 663.7 mw m〜(Δ2))处于稳态状态。提出,APY与纳米结构R-Go杂交的组合效果为细菌定植提供了大的表面积。此外,高生物电催化活性归因于APY的低分子性质,其通过氧化还原机制掺入ET电池的EET途径中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号