首页> 外文期刊>RSC Advances >Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology
【24h】

Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology

机译:介绍DDEC6原子种群分析:第1部分。电荷分配理论和方法

获取原文
       

摘要

Net atomic charges (NACs) are widely used in all chemical sciences to concisely summarize key information about the partitioning of electrons among atoms in materials. The objective of this article is to develop an atomic population analysis method that is suitable to be used as a default method in quantum chemistry programs irrespective of the kind of basis sets employed. To address this challenge, we introduce a new atoms-in-materials method with the following nine properties: (1) exactly one electron distribution is assigned to each atom, (2) core electrons are assigned to the correct host atom, (3) NACs are formally independent of the basis set type because they are functionals of the total electron distribution, (4) the assigned atomic electron distributions give an efficiently converging polyatomic multipole expansion, (5) the assigned NACs usually follow Pauling scale electronegativity trends, (6) NACs for a particular element have good transferability among different conformations that are equivalently bonded, (7) the assigned NACs are chemically consistent with the assigned atomic spin moments, (8) the method has predictably rapid and robust convergence to a unique solution, and (9) the computational cost of charge partitioning scales linearly with increasing system size. We study numerous materials as examples: (a) a series of endohedral C _(60) complexes, (b) high-pressure compressed sodium chloride crystals with unusual stoichiometries, (c) metal–organic frameworks, (d) large and small molecules, (e) organometallic complexes, (f) various solids, and (g) solid surfaces. Due to non-nuclear attractors, Bader's quantum chemical topology could not assign NACs for some of these materials. We show for the first time that the Iterative Hirshfeld and DDEC3 methods do not always converge to a unique solution independent of the initial guess, and this sometimes causes those methods to assign dramatically different NACs on symmetry-equivalent atoms. By using a fixed number of charge partitioning steps with well-defined reference ion charges, the DDEC6 method avoids this problem by always converging to a unique solution. These characteristics make the DDEC6 method ideally suited for use as a default charge assignment method in quantum chemistry programs.
机译:净原子电荷(NACS)广泛用于所有化学科学,以简要总结关于材料中原子之间电子的分配的关键信息。本文的目的是开发一种原子群分析方法,适合用作量子化学计划的默认方法,无论采用的基础套装。为了解决这一挑战,我们介绍了一种新的原子内原子方法,具有以下九个特性:(1)恰好将一个电子分布分配给每个原子,(2)核心电子被分配给正确的主体原子,(3) NACS正式独立于基​​础设定类型,因为它们是总电子分布的功能,(4)所指定的原子电子分布可以有效地聚合的多原子多极膨胀,(5)分配的NAC通常遵循龙指级电负极趋势,(6对于特定元素的NACs具有良好的可转移性,在等效键合的不同构象之间具有良好的可转移性,(7)分配的NAC与分配的原子旋转矩,(8)该方法可预测可预测迅速且鲁棒的融合到独特的解决方案,以及(9)电荷分区的计算成本随着系统尺寸的增加线性缩放。我们研究了许多材料作为实例:(a)一系列内oheoheyc _(60)络合物,(b)高压压缩氯化钠晶体,具有不寻常的化学素,(c)金属 - 有机框架,(d)大小分子(e)有机金属配合物,(f)各种固体,和(g)固体表面。由于非核吸引子,庞大的量子化学拓扑结构无法为其中一些材料分配NAC。我们首次展示迭代HIRSHFELD和DDEC3方法并不总是汇集到独立于初始猜测的唯一解决方案,这有时会导致这些方法在对称等效原子上显着分配不同的NAC。通过使用具有良好定义的参考离子电荷的固定数量的电荷分区步骤,DDEC6方法始终通过汇聚到唯一的解决方案来避免此问题。这些特性使DDEC6方法理想地适用于量子化学计划中的默认电荷分配方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号