首页> 外文期刊>RSC Advances >Graphene-supported binary active Mn0.25Co0.75O solid solution derived from a CoMn-layered double hydroxide precursor for highly improved lithium storage
【24h】

Graphene-supported binary active Mn0.25Co0.75O solid solution derived from a CoMn-layered double hydroxide precursor for highly improved lithium storage

机译:石墨烯负载的二元活性MN0.25CO0.75O固体溶液衍生自用于高度改善的锂储存的COMN层层双氢氧化物前体

获取原文
           

摘要

Dispersion of multiple chemically active components strongly affects the electrochemical performances of electrode nanomaterials for lithium-ion batteries. We herein describe highly improved lithium storage of a graphene-supported binary active solid solution (Mn _(0.25) Co _(0.75) O) derived from CoMn-layered double hydroxide/graphene oxide precursor (CoMn-LDH/GO). Ex situ X-ray diffraction characterization clarifies the topotactic transformation from the CoMn-LDH/GO precursor to the resulting Mn _(0.25) Co _(0.75) O solid solution with increasing temperatures. The electrochemical test shows that the Mn _(0.25) Co _(0.75) O solid-solution electrode is able to exhibit highly improved electrochemical performances, which are superior to those of the electrodes of individual CoO/G, MnO/G, and the mixture ( m MnO + CoO/G). The reversible capacity of the Mn _(0.25) Co _(0.75) O electrode reaches 980 mA h g ~(?1) after 100 cycles at 100 mA g ~(?1) , and especially up to 1087 mA h g ~(?1) after 1300 cycles at a high current density of 2 A g ~(?1) . TEM observations and Nyquist plots provide information on the morphological preservation of the solid-solution nanoplatelets consisting of small nanoparticles observed after the super-long cycling, and the low charge transfer resistance to underlie the improvements, respectively. Our LDH precursor-based protocol may be extended to prepare other multiple-component well-dispersed metal oxides or even sulfides, and thus provide a new strategy for construction of high-performance electrodes for energy storage.
机译:多种化学活性成分的分散强烈影响锂离子电池的电极纳米材料的电化学性能。我们在本文中描述了衍生自COMN层层双氢氧化物/石墨烯氧化物前体(COMN-LDH / GO)的高度改进的石墨烯负载的二元活性固溶体(Mn _(0.25)CO _(0.75))的高度改进的锂储存。 EX原位X射线衍射表征阐明了来自COMN-LDH / GO前体的拓扑转化,并通过增加的温度阐明了所得Mn _(0.25)CO _(0.75)O固体溶液。电化学试验表明,Mn _(0.25)CO _(0.75)O固体溶液电极能够表现出高度改善的电化学性能,其优于各种COO / G,MNO / G和所述电极的电极混合物(M mnO + coo / g)。在100 mA g〜(α1)的100次循环后,Mn _(0.25)Co _(0.75)Co _(0.75)O电极的可逆容量达到980mA Hg〜(α1),尤其是高达1087 mA Hg〜(?1 )在高电流密度为2Ag〜(α1)的1300次循环后。 TEM观测和奈奎斯特图提供了关于在超长循环后观察到的小纳米粒子的固体保护物形态保存的信息,以及分别对改进的低电荷转移抗性。我们的LDH前体的方案可以延长以制备其他多组分井分散的金属氧化物或甚至硫化物,因此提供了一种新的用于储能的高性能电极的新策略。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号