...
首页> 外文期刊>Bioengineering & Translational Medicine >Validation of the 1,4‐butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications
【24h】

Validation of the 1,4‐butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications

机译:将1,4-丁二醇热塑性聚氨酯验证为3D生物监测应用的新型材料

获取原文
           

摘要

Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage‐like mechanical properties capable of sustaining high load‐bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4‐butanediol thermoplastic polyurethane elastomer (b‐TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b‐TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad‐derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT‐qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b‐TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b‐TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b‐TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.
机译:组织工程(TE)寻求制造模拟机械强度,结构和天然组织组成的植入物。软骨TE需要开发功能性个性化植入物,其具有能够维持高承载环境的软骨状机械性能,以集成到软骨缺陷的周围组织中。在这项研究中,我们评估了新的1,4-丁二醇热塑性聚氨酯弹性体(B-TPUE)衍生物丝,作为3D生物印刷材料,其应用在软骨TE中。研究了B-TPUE在摩擦和弹性方面的力学行为,并与人关节软骨,PCL和PLA进行比较。此外,促进替代素脂肪垫衍生的人间充质干细胞(MSCs)与支架一起生成生物制作。通过Alamar蓝色测定,SEM,共聚焦显微镜和RT-QPCR分析体外细胞毒性,增殖潜力,细胞活力和软骨内分化。此外,分析了体内生物相容性和宿主集成。 B-TPUE对本机软骨相比,对本机软骨以及PCL和PLA的剪切行为以及更接近软骨的剪切性。此外,B-TPUE生物印刷的支架能够保持适当的增殖潜力,细胞活力和支持的MSC软骨发生。最后,体内研究表明,在支架植入后21天没有毒性作用,细胞外基质沉积和周围组织内的一体化。这是第一研究,验证B-TPUE用于3D BioPlinting的生物相容性。我们的研究结果表明,这种生物材料可以用于具有可定制的机械性能的人工组织的自动生物制造,包括软骨TE应用的巨大潜力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号