...
首页> 外文期刊>Coatings >Ti–Cu Coatings Deposited by a Combination of HiPIMS and DC Magnetron Sputtering: The Role of Vacuum Annealing on Cu Diffusion, Microstructure, and Corrosion Resistance
【24h】

Ti–Cu Coatings Deposited by a Combination of HiPIMS and DC Magnetron Sputtering: The Role of Vacuum Annealing on Cu Diffusion, Microstructure, and Corrosion Resistance

机译:通过HIPIMS和DC磁控溅射的组合沉积的Ti-Cu涂层:真空退火对Cu扩散,微观结构和耐腐蚀的作用

获取原文
           

摘要

Titanium-copper (Ti–Cu) coatings have attracted extensive attention in the surface modification of industrial and biomedical materials due to their excellent physical and chemical properties and biocompatibility. Here, Ti–Cu coatings are fabricated using a combination of high-power pulsed magnetron sputtering (HPPMS; also known as high power impulse magnetron sputtering (HiPIMS)) and DC magnetron sputtering followed by vacuum annealing at varied temperatures (300, 400, and 500 °C). X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) data showed that Ti, Cu, and CuTi3 are mainly formed in the coatings before annealing, while Ti3O, Cu2O, and CuTi3 are the main compounds present in the annealed coatings. The cross-sectional TEM micrographs and corresponding EDS results provided evidence that Ti is mainly present on the surface and interfaces of the silicon substrate and the Ti–Cu coatings annealed at 500 °C, while the bulk of the coatings is enriched with Cu. The resistivity of the coatings decreased with increasing the annealing temperature from 300 to 500 °C. Based on self-corrosion current density data, the Ti–Cu coating annealed at 300 °C showed similar corrosion performance compared to the as-deposited Ti–Cu coating, while the corrosion rate increased for the Ti–Cu coatings annealed at 400 and 500 °C. Stable release of copper ions in PBS (cumulative released concentration of 0.8–1.0 μM) for up to 30 days was achieved for all the annealed coatings. Altogether, the results demonstrate that vacuum annealing is a simple and viable approach to tune the Cu diffusion and microstructure of the Ti–Cu coatings, thereby modulating their electrical resistivity, corrosion performance, and Cu ion release behavior.
机译:由于其优异的物理和化学性质和生物相容性,钛 - 铜(Ti-Cu)涂层引起了工业和生物医学材料的表面改性的广泛关注。这里,使用高功率脉冲磁控溅射(HPPMS的组合制造Ti-Cu涂层;也称为高功率脉冲磁控溅射(Hipims))和DC磁控溅射,然后在变化温度下真空退火(300,400,和500°C)。 X射线衍射(XRD),透射电子显微镜(TEM)和X射线光电子能谱(XPS)数据显示Ti,Cu和Cuti3主要在退火之前在涂层中形成,而Ti3O,Cu2O和Cuti3是存在于退火涂层中的主要化合物。横截面TEM显微照片和相应的EDS结果提供了证据,即Ti主要存在于硅衬底的表面和界面上,并且在500℃下退火的Ti-Cu涂层,而大部分涂层富含Cu。随着300至500℃的退火温度增加,涂层的电阻率降低。基于自腐蚀电流密度数据,与沉积的Ti-Cu涂层相比,在300℃下退火的Ti-Cu涂层显示出与沉积的Ti-Cu涂层相似的腐蚀性能,而在400和500的退火的Ti-Cu涂层增加的腐蚀速率增加°C。对于所有退火的涂料,实现了稳定的PBS(累积释放浓度为0.8-1.0μm)的铜离子释放最多30天。结果,结果表明,真空退火是一种简单且可行的方法来调整Ti-Cu涂层的Cu扩散和微观结构,从而调节其电阻率,腐蚀性能和Cu离子释放行为。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号