...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1
【24h】

Investigation of the global methane budget over 1980–2017 using GFDL-AM4.1

机译:使用GFDL-AM4.1调查1980 - 2017年全球甲烷预算

获取原文
           

摘要

Changes in atmospheric methane abundance have implications for both chemistry and climate as methane is both a strong greenhouse gas and an important precursor for tropospheric ozone. A better understanding of the drivers of trends and variability in methane abundance over the recent past is therefore critical for building confidence in projections of future methane levels. In this work, the representation of methane in the atmospheric chemistry model AM4.1 is improved by optimizing total methane emissions (to an annual mean of 580±34Tg?yr?1) to match surface observations over 1980–2017. The simulations with optimized global emissions are in general able to capture the observed trend, variability, seasonal cycle, and latitudinal gradient of methane. Simulations with different emission adjustments suggest that increases in methane emissions (mainly from agriculture, energy, and waste sectors) balanced by increases in methane sinks (mainly due to increases in OH levels) lead to methane stabilization (with an imbalance of 5Tg?yr?1) during 1999–2006 and that increases in methane emissions (mainly from agriculture, energy, and waste sectors) combined with little change in sinks (despite small decreases in OH levels) during 2007–2012 lead to renewed growth in methane (with an imbalance of 14Tg?yr?1 for 2007–2017). Compared to 1999–2006, both methane emissions and sinks are greater (by 31 and 22Tg?yr?1, respectively) during 2007–2017. Our tagged tracer analysis indicates that anthropogenic sources (such as agriculture, energy, and waste sectors) are more likely major contributors to the renewed growth in methane after 2006. A sharp increase in wetland emissions (a likely scenario) with a concomitant sharp decrease in anthropogenic emissions (a less likely scenario), would be required starting in 2006 to drive the methane growth by wetland tracer. Simulations with varying OH levels indicate that a 1% change in OH levels could lead to an annual mean difference of ~4Tg?yr?1 in the optimized emissions and a 0.08-year difference in the estimated tropospheric methane lifetime. Continued increases in methane emissions along with decreases in tropospheric OH concentrations during 2008–2015 prolong methane's lifetime and therefore amplify the response of methane concentrations to emission changes. Uncertainties still exist in the partitioning of emissions among individual sources and regions.
机译:大气甲烷丰度的变化对化学和气候均为甲烷具有强烈的温室气体和对流层臭氧的重要前体。更好地了解最近过去甲烷丰富的趋势和可变性的驱动因素,因此对于对未来甲烷水平的预测建立信心至关重要。在这项工作中,通过优化总甲烷排放(580±34tg?YR?1)来提高大气化学模型AM4.1中甲烷的表示,以匹配1980-2017的表面观察。具有优化的全球排放的模拟一般能够捕获甲烷的观察到的趋势,可变性,季节循环和纬度梯度。具有不同排放调整的模拟表明,甲烷排放量(主要来自农业,能源和废物部门)的增加因甲烷水槽的增加而平衡(主要是由于oh水平的增加)导致甲烷稳定(具有5tg≤yr的不平衡? 1)在1999年至2006年期间,甲烷排放(主要来自农业,能源和废物部门)的增加结合在2007 - 2012年期间与水槽(尽管哦水平的小降低)导致甲烷的增长(哦减少14tg?YR?1持续2007-2017)。与1999 - 2017年相比,甲烷排放量和水槽均更大(分别为31和22tg?1,分别)。我们标记的示踪剂分析表明,2006年后,人为来源(如农业,能源和废物部门)更有可能对甲烷的再生增长的主要贡献者更加贡献。湿地排放(可能的情况)伴随着伴随地急剧下降从2006年开始,要求人类学排放(不太可能的情况),以推动湿地示踪剂的甲烷增长。不同oh水平的模拟表明,oh水平的1%变化可能导致〜4tg?1在优化排放中的年平均值和估计的对流层甲烷寿命中的0.08年差异。 2008 - 2015年延长甲烷的寿命期间,甲烷排放随着对流层孔浓度的降低,持续增加,因此扩增甲烷浓度与排放变化的反应。在个别来源和地区排放的排放分区中仍存在不确定性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号