...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics
【24h】

Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics

机译:气溶胶对深部对流的影响:通过对流云微物质的气雾扰动繁殖

获取原文
           

摘要

The impact of aerosols on ice- and mixed-phase processes in deep convective clouds remains highly uncertain, and the wide range of interacting microphysical processes is still poorly understood. To understand these processes, we analyse diagnostic output of all individual microphysical process rates for two bulk microphysics schemes in the Weather and Research Forecasting model (WRF). We investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations through the microphysics all the way to the macrophysical development of the convective clouds. We perform simulations for two different cases of idealised supercells using two double-moment bulk microphysics schemes and a bin microphysics scheme. The simulations cover a comprehensive range of values for cloud droplet number concentration (CDNC) and cloud condensation nuclei (CCN) concentration as a proxy for aerosol effects on convective clouds. We have developed a new cloud tracking algorithm to analyse the morphology and time evolution of individually tracked convective cells in the simulations and their response to the aerosol perturbations. This analysis confirms an expected decrease in warm rain formation processes due to autoconversion and accretion for more polluted conditions. There is no evidence of a significant increase in the total amount of latent heat, as changes to the individual components of the integrated latent heating in the cloud compensate each other. The latent heating from freezing and riming processes is shifted to a higher altitude in the cloud, but there is no significant change to the integrated latent heat from freezing. Different choices in the treatment of deposition and sublimation processes between the microphysics schemes lead to strong differences including feedbacks onto condensation and evaporation. These changes in the microphysical processes explain some of the response in cloud mass and the altitude of the cloud centre of gravity. However, there remain some contrasts in the development of the bulk cloud parameters between the microphysics schemes and the two simulated cases.
机译:气溶胶对深入对流云中的冰和混合阶段过程的影响仍然高度不确定,并且各种相互作用的微观物理过程仍然明白。要了解这些过程,我们在天气和研究预测模型(WRF)中分析了两个散装微妙方案的所有单个微药物处理率的诊断输出。我们研究了个体过程对气溶胶条件的变化的反应,并通过微观物理学的扰动繁殖到对流云的宏观物理发展。我们使用两种双重批量微型微物质方案和箱微型药物方案对两种不同的理想超细晶体造模进行仿真。该模拟涵盖了云液滴数浓度(CDNC)和云凝结核(CCN)浓度的综合值,作为对流云的气溶胶作用的代理。我们开发了一种新的云跟踪算法,分析了在模拟中单独跟踪的对流细胞的形态和时间演变及其对气溶胶扰动的反应。该分析证实,由于可污染条件的高压转化和增生,因此确认预期的温雨形成过程减少。没有证据表明潜热总量的显着增加,因为云中的集成潜热的各个组分的变化彼此补偿。冻结和升温过程的潜热被移至云中的较高高度,但对冻结的整体潜热没有显着变化。治疗微微物理方案之间的沉积和升华过程的不同选择导致强烈的差异,包括在冷凝和蒸发上的反馈。微微物理过程中的这些变化解释了云质量的一些响应和云重心的高度。然而,在微物质理学方案和两个模拟案例之间的批量云参数的发展中仍然存在对比。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号