...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Future trends in stratosphere-to-troposphere transport in CCMI models
【24h】

Future trends in stratosphere-to-troposphere transport in CCMI models

机译:CCMI模型中平流层到对流层运输的未来趋势

获取原文
           

摘要

One of the key questions in the air quality and climate sciences is how tropospheric ozone concentrations will change in the future. This will depend on two factors: changes in stratosphere-to-troposphere transport (STT) and changes in tropospheric chemistry. Here we aim to identify robust changes in STT using simulations from the Chemistry Climate Model Initiative (CCMI) under a common climate change scenario (RCP6.0). We use two idealized stratospheric tracers to isolate changes in transport: stratospheric ozone (O3S), which is exactly like ozone but has no chemical sources in the troposphere, and st80, a passive tracer with fixed volume mixing ratio in the stratosphere. We find a robust increase in the tropospheric columns of these two tracers across the models. In particular, stratospheric ozone in the troposphere is projected to increase 10%–16% by the end of the 21st century in the RCP6.0 scenario. Future STT is enhanced in the subtropics due to the strengthening of the shallow branch of the Brewer–Dobson circulation (BDC) in the lower stratosphere and of the upper part of the Hadley cell in the upper troposphere. The acceleration of the deep branch of the BDC in the Northern Hemisphere (NH) and changes in eddy transport contribute to increased STT at high latitudes. These STT trends are caused by greenhouse gas (GHG) increases, while phasing out of ozone-depleting substances (ODS) does not lead to robust transport changes. Nevertheless, the decline of ODS increases the reservoir of ozone in the lower stratosphere, which results in enhanced STT of O3S at middle and high latitudes. A higher emission scenario (RCP8.5) produces stronger STT trends, with increases in tropospheric column O3S more than 3 times larger than those in the RCP6.0 scenario by the end of the 21st century.
机译:空气质量和气候科学中的关键问题之一是对流层臭氧浓度将来会发生变化。这将取决于两个因素:平流层 - 对流层运输(STT)的变化以及对流层化学的变化。在这里,我们的目标是在共同的气候变化场景下使用来自化学气候模型倡议(CCMI)的模拟来确定STT的强劲变化。(RCP6.0)。我们使用两种理想化的平坦型示踪剂来分离运输的变化:平流层臭氧(O3S),其与臭氧完全一样,但在对流层中没有化学源,并且ST80是平流层中固定体积混合比的被动示踪剂。我们在模型上发现这两个示踪剂的对流层柱的强大增加。特别是,对流层中的平流层臭氧被预计到21世纪末在RCP6.0场景中增加了10%-16%。由于在较低的平流层中的酿酒师 - 多人循环(BDC)的浅分支和上层对流层中的哈德利细胞的上部的浅枝,因此STT在副数据中增强了STT。 BDC在北半球(NH)中的深度分支的加速度和涡流转运的变化有助于增加高纬度的STT。这些STT趋势是由温室气体(GHG)增加引起的,同时从臭氧消耗物质(ODS)的逐步脱离,不会导致强大的运输变化。然而,ODS的下降增加了臭氧在较低平流层中的储层,这导致中高纬度的O3S的增强STT。更高的发射方案(RCP8.5)产生了强大的STT趋势,随着21世纪末,对流层柱O3s的增加超过了RCP6.0场景的3倍。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号