...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >The SPARC water vapour assessment?II: profile-to-profile and climatological comparisons of stratospheric δD(H2O) observations from satellite
【24h】

The SPARC water vapour assessment?II: profile-to-profile and climatological comparisons of stratospheric δD(H2O) observations from satellite

机译:SPARC水蒸气评估?II:卫星平流层ΔD(H2O)观测的轮廓型和气候比较

获取原文
           

摘要

Within the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment?(WAVAS-II), we evaluated five data sets of δD(H2O) obtained from observations by Odin/SMR (Sub-Millimetre Radiometer), Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding), and SCISAT/ACE-FTS (Science Satellite/Atmospheric Chemistry Experiment – Fourier Transform Spectrometer) using profile-to-profile and climatological comparisons. These comparisons aimed to provide a comprehensive overview of typical uncertainties in the observational database that could be considered in the future in observational and modelling studies. Our primary focus is on stratospheric altitudes, but results for the upper troposphere and lower mesosphere are also shown. There are clear quantitative differences in the measurements of the isotopic ratio, mainly with regard to comparisons between the SMR data set and both the MIPAS and ACE-FTS data sets. In the lower stratosphere, the SMR data set shows a higher depletion in δD than the MIPAS and ACE-FTS data sets. The differences maximise close to 50hPa and exceed 200‰. With increasing altitude, the biases decrease. Above 4hPa, the SMR data set shows a lower δD depletion than the MIPAS data sets, occasionally exceeding 100‰. Overall, the δD biases of the SMR data set are driven by HDO biases in the lower stratosphere and by H2O biases in the upper stratosphere and lower mesosphere. In between, in the middle stratosphere, the biases in δD are the result of deviations in both HDO and H2O. These biases are attributed to issues with the calibration, in particular in terms of the sideband filtering, and uncertainties in spectroscopic parameters. The MIPAS and ACE-FTS data sets agree rather well between about 100?and 10hPa. The MIPAS data sets show less depletion below approximately 15hPa (up to about 30‰), due to differences in both HDO and H2O. Higher up this behaviour is reversed, and towards the upper stratosphere the biases increase. This is driven by increasing biases in H2O, and on occasion the differences in δD exceed 80‰. Below 100hPa, the differences between the MIPAS and ACE-FTS data sets are even larger. In the climatological comparisons, the MIPAS data sets continue to show less depletion in δD than the ACE-FTS data sets below 15hPa during all seasons, with some variations in magnitude. The differences between the MIPAS and ACE-FTS data have multiple causes, such as differences in the temporal and spatial sampling (except for the profile-to-profile comparisons), cloud influence, vertical resolution, and the microwindows and spectroscopic database chosen. Differences between data sets from the same instrument are typically small in the stratosphere. Overall, if the data sets are considered together, the differences in δD among them in key areas of scientific interest (e.g.?tropical and polar lower stratosphere, lower mesosphere, and upper troposphere) are too large to draw robust conclusions on atmospheric processes affecting the water vapour budget and distribution, e.g.?the relative importance of different mechanisms transporting water vapour into the stratosphere.
机译:在第二个SPARC(平流层 - 对流层过程及其在气候角色)的框架内进行水蒸气评估?(WAVAS-II),我们评估了由ODIN / SMR的观察结果获得的五种数据组(H2O)(亚毫米辐射计),Envisat / MIPAS(用于被动大气发出的环境卫星/迈克尔森干涉仪),以及使用型材到型材和气候比较的Scisat / Ace-FTS(科学卫星/大气化学实验 - 傅里叶变换光谱仪)。这些比较旨在提供在观察和建模研究中可以考虑的观察数据库中典型的不确定性的全面概述。我们的主要重点是平流层高度,但还显示了上层对流层和较低的介体的结果。同位素比率的测量中存在明显的定量差异,主要关于SMR数据集和MIPAS和ACE-FTS数据集之间的比较。在较低的平流层中,SMR数据集显示比MIPAS和ACE-FTS数据集更高的耗尽。差异最大化接近50HPa并超过200‰。随着海拔高度的增加,偏差减少。在4HPA以上,SMR数据集显示比MIPA数据集的ΔD耗竭较低,偶尔超过100。总的来说,SMR数据集的ΔD偏差由较低平流层中的HDO偏置驱动,并通过上层层和较低的介质层中的H2O偏置。在中间,在中间平流层中,ΔD中的偏差是HDO和H2O中偏差的结果。这些偏差归因于校准的问题,特别是在边带滤波和光谱参数中的不确定性方面。 MIPAS和ACE-FTS数据集相当于约100?和10HPa之间的恰好。由于HDO和H2O的差异,MIPA数据集显示出低于约15HPa(高达约30次)的耗尽。更高的这种行为是逆转的,朝向上层偏置的偏差增加。这是通过增加H2O中的偏差而导致的,并且在ΔD的差异超过80°。低于100HPa,MIPA和ACE-FTS数据集之间的差异甚至更大。在气候比较中,MIPAS数据集继续在ΔD中显示比在所有季节在15HPa下方的ace-FTS数据集中的较少耗尽,其幅度的一些变化。 MIPA和ACE-FTS数据之间的差异具有多种原因,例如时间和空间采样的差异(外部简档比较除外),云影响,垂直分辨率和所选择的微调和光谱数据库。平流层中,来自相同仪器的数据集之间的差异通常很小。总的来说,如果数据集被认为是在一起的情况下,它们之间的Δd在科学兴趣的关键领域中的差异(例如?热带和极性和极性和极性较低的平流层,较低的对流层和上层对流层)太大,无法在影响其的大气过程中汲取强大的结论水蒸气预算和分布,例如?不同机制将水蒸气输送到平流层的相对重要性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号