...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments
【24h】

Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments

机译:复杂质谱数据集的维度减少技术:应用于实验室大气有机氧化实验

获取原文
           

摘要

Oxidation of organic compounds in the atmosphere produces an immensely complex mixture of product species, posing a challenge for both their measurement in laboratory studies and their inclusion in air quality and climate models. Mass spectrometry techniques can measure thousands of these species, giving insight into these chemical processes, but the datasets themselves are highly complex. Data reduction techniques that group compounds in a chemically and kinetically meaningful way provide a route to simplify the chemistry of these systems but have not been systematically investigated. Here we evaluate three approaches to reducing the dimensionality of oxidation systems measured in an environmental chamber: positive matrix factorization (PMF), hierarchical clustering analysis (HCA), and a parameterization to describe kinetics in terms of multigenerational chemistry (gamma kinetics parameterization, GKP). The evaluation is implemented by means of two datasets: synthetic data consisting of a three-generation oxidation system with known rate constants, generation numbers, and chemical pathways; and the measured products of OH-initiated oxidation of a substituted aromatic compound in a chamber experiment. We find that PMF accounts for changes in the average composition of all products during specific periods of time but does not sort compounds into generations or by another reproducible chemical process. HCA, on the other hand, can identify major groups of ions and patterns of behavior and maintains bulk chemical properties like carbon oxidation state that can be useful for modeling. The continuum of kinetic behavior observed in a typical chamber experiment can be parameterized by fitting species' time traces to the GKP, which approximates the chemistry as a linear, first-order kinetic system. The fitted parameters for each species are the number of reaction steps with OH needed to produce the species (the generation) and an effective kinetic rate constant that describes the formation and loss rates of the species. The thousands of species detected in a typical laboratory chamber experiment can be organized into a much smaller number (10–30) of groups, each of which has a characteristic chemical composition and kinetic behavior. This quantitative relationship between chemical and kinetic characteristics, and the significant reduction in the complexity of the system, provides an approach to understanding broad patterns of behavior in oxidation systems and could be exploited for mechanism development and atmospheric chemistry modeling.
机译:大气中有机化合物的氧化产生了一种完全复杂的产物物种混合物,对其在实验室研究中的测量和它们在空气质量和气候模型中构成了挑战。质谱技术可以测量数千种这些物种,深入了解这些化学过程,但数据集本身非常复杂。数据减少技术以化学和动力学方式群化化合物提供了一种简化这些系统化学的途径,但尚未系统地研究。在这里,我们评估了减少在环境室中测量的氧化系统的维度的三种方法:正矩阵分子(PMF),分层聚类分析(HCA)以及在多粒化学方面描述动力学的参数化(Gamma动力学参数化,GKP) 。评估通过两个数据集实现:由具有已知速率常数,生成数和化学途径的三代氧化系统组成的合成数据;和在腔室实验中的OH-引发的OH-引发的氧化氧化氧化的产物。我们发现PMF在特定时间段内所有产品的平均成分中的变化,但不会将化合物分成几代或另一种可再现的化学过程。另一方面,HCA可以识别主要的离子和行为模式,并保持块化学性质,如可用于建模的碳氧化状态。在典型的腔室实验中观察到的动力学行为的连续力可以通过拟合物种的时间迹线对GKP来参数化,这使化学作为线性的一流式动力学系统近似。每个物种的拟合参数是产生物种(生成)的OH所需的反应步骤的数量和描述物种形成和损失率的有效动力学率常数。在典型的实验室腔室实验中检测到的数千种物种可以组织成较少的数量(10-30)组,每个组成具有特征化学成分和动力学行为。化学和动力学特性之间的这种定量关系,以及系统复杂性的显着降低提供了理解氧化系统中的广泛行为模式的方法,并且可以利用机制开发和大气化学建模。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号