首页> 外文期刊>Energy Reports >Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations
【24h】

Thermodynamic analysis of high-temperature pumped thermal energy storage systems: Refrigerant selection, performance and limitations

机译:高温泵热能储存系统的热力学分析:制冷剂选择,性能和限制

获取原文
           

摘要

One of the bottlenecks for a wider implementation of renewable energies is the development of efficient energy storage systems which can compensate for the intermittency of renewable energy sources. Pumped thermal energy storage (PTES) is a very recent technology that can be a promising site-independent alternative to pumped hydro energy storage or compressed air energy storage, without the corresponding geological and environmental restrictions. Accordingly, this paper presents a full thermodynamic analysis of a PTES system consisting of a high-temperature heat pump (HTHP), which drives an organic Rankine cycle (ORC) by means of an intermediate high-temperature thermal energy storage system (HT-TES). The latter combines both latent and sensible heat thermal energy storage sub-systems to maximize the advantage of the refrigerant subcooling. After validating the proposed model, several parametric studies have been carried out to assess the system performance using different refrigerants and configurations, under a wide range of source and sink temperatures. The results show that for a system that employs the same refrigerant in both the HTHP and ORC, and for a latent heat thermal energy storage system at 133oC, R-1233zd(E) and R-1234ze(Z) present the best performance. Among all the cases studied with a latent heat thermal energy storage system at 133°C, the best system performance, also considering the impact on the environment, has been achieved employing R-1233zd(E) in the HTHP and Butene in the ORC. Such a system can theoretically reach a power ratio of 1.34 under HTHP source and ORC sink temperatures of 100 and 25°C, respectively.
机译:更广泛实现可再生能源的瓶颈之一是发展有效的能量存储系统,可以补偿可再生能源的间歇性。泵送热能存储(PTES)是一个最近的技术,可以成为泵送水力储能或压缩空气储能的有希望的独立替代方案,而无需相应的地质和环境限制。因此,本文介绍了由高温热泵(HTHP)组成的PTES系统的全热力学分析,该高温热泵(HTHP)通过中间高温热能存储系统(HT-TES)驱动有机朗肯循环(ORC)。 )。后者结合了潜在和明智的热能储能存储子系统来最大化制冷剂过冷的优点。在验证所提出的模型之后,已经进行了几项参数研究,以评估使用不同制冷剂和配置的系统性能,在各种源和沉降温度下。结果表明,对于在HTHP和ORC中使用相同制冷剂的系统,并且在133oC,R-1233ZD(E)和R-1234ZE(Z)的潜热热能存储系统具有最佳性能。在通过在133°C的潜热热能存储系统中研究的所有情况中,也在兽人中使用R-1233ZD(E)来实现最佳的系统性能,也取得了在兽人中的R-1233ZD(E)。这种系统在理论上可以在HTHP源和100和25°C的ORC沉降温度下理论上达到1.34的功率比。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号