...
首页> 外文期刊>mSphere >Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2
【24h】

Multiple Bactericidal Mechanisms of the Zinc Ionophore PBT2

机译:锌离子孔PBT2的多种杀菌机制

获取原文
           

摘要

Globally, more antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance (AMR). The development of novel ionophores, a class of antimicrobials used exclusively in animals, holds promise as a strategy to replace or reduce essential human antimicrobials in veterinary practice. PBT2 is a zinc ionophore with recently demonstrated antibacterial activity against several Gram-positive pathogens, although the underlying mechanism of action is unknown. Here, we investigated the bactericidal mechanism of PBT2 in the bovine mastitis-causing pathogen, Streptococcus uberis . In this work, we show that PBT2 functions as a Zn 2 /H ionophore, exchanging extracellular zinc for intracellular protons in an electroneutral process that leads to cellular zinc accumulation. Zinc accumulation occurs concomitantly with manganese depletion and the production of reactive oxygen species (ROS). PBT2 inhibits the activity of the manganese-dependent superoxide dismutase, SodA, thereby impairing oxidative stress protection. We propose that PBT2-mediated intracellular zinc toxicity in S. uberis leads to lethality through multiple bactericidal mechanisms: the production of toxic ROS and the impairment of manganese-dependent antioxidant functions. Collectively, these data show that PBT2 represents a new class of antibacterial ionophores capable of targeting bacterial metal ion homeostasis and cellular redox balance. We propose that this novel and multitarget mechanism of PBT2 makes the development of cross-resistance to medically important antimicrobials unlikely. IMPORTANCE More antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance. Therefore, the elimination of antimicrobial crossover between human and veterinary medicine is of great interest. Unfortunately, the development of new antimicrobials is an expensive high-risk process fraught with difficulties. The repurposing of chemical agents provides a solution to this problem, and while many have not been originally developed as antimicrobials, they have been proven safe in clinical trials. PBT2, a zinc ionophore, is an experimental therapeutic that met safety criteria but failed efficacy checkpoints against both Alzheimer’s and Huntington’s diseases. It was recently found that PBT2 possessed potent antimicrobial activity, although the mechanism of bacterial cell death is unresolved. In this body of work, we show that PBT2 has multiple mechanisms of antimicrobial action, making the development of PBT2 resistance unlikely.
机译:在全球范围内,更多的抗菌剂用于食品生产的动物而不是人类,并且在抗微生物抗性(AMR)面临的情况下,对医学上重要的人类抗微生物的广泛使用构成了显着的公共卫生威胁。新型离子团的发展,一类专门用于动物的抗微生物,认为应该是替代或减少兽医实践中必需人抗微生物的策略。 PBT2是锌离子载体,最近证明了针对几种革兰氏阳性病原体的抗菌活性,尽管潜在的作用机制未知。在这里,我们研究了牛乳腺炎的PBT2的杀菌机制,导致的病原体,链球菌Uberis。在这项工作中,我们表明PBT2用作Zn 2 / H离子机芯,在通向细胞锌积聚的电气过程中交换用于细胞内质子的细胞外锌。锌累积伴随着锰耗竭和活性氧(ROS)的产生。 PBT2抑制载锰依赖的超氧化物歧化酶,苏打水的活性,从而损害氧化应激保护。我们提出PBT2介导的S. Uberis中的细胞内锌毒性通过多种杀菌机制导致致死性:毒性ROS的生产和依赖锰依赖性抗氧化功能的损害。总的来说,这些数据显示PBT2表示能够靶向细菌金属离子稳态和细胞氧化还原平衡的新一类抗菌离子团。我们提出了PBT2的这种新颖和多元机制,使得不太可能对医学上重要的抗微生物的交叉抗性的发展。重要性更多的抗微生物在食品动物中使用而不是人类,并且在面对抗微生物抗性上升的情况下,对医学上重要的人类抗微生物的广泛使用构成了显着的公共卫生威胁。因此,消除人和兽医学之间的抗微生物交叉具有很大的兴趣。不幸的是,新抗菌剂的发展是一种昂贵的高风险过程,充满了困难。分解化学试剂为该问题提供了解决方案,虽然许多人未被最初被开发为抗微生物,但它们在临床试验中被证明是安全的。 PBT2是锌离子素,是一种实验治疗方法,符合安全标准,但对阿尔茨海默氏植物和亨廷顿疾病的疗效检查点失败。最近发现PBT2具有有效的抗微生物活性,尽管细菌细胞死亡的机制未得到解决。在这个工作机构中,我们表明PBT2具有多种抗微生物作用机制,不太可能开发PBT2电阻。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号