...
首页> 外文期刊>Proceedings >Developing Technologies for Biological Experiments in Deep Space
【24h】

Developing Technologies for Biological Experiments in Deep Space

机译:深度空间生物实验开发技术

获取原文
           

摘要

In light of an upcoming series of missions beyond low Earth orbit (LEO) through NASA’s Artemis program and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined and protective countermeasures need to be developed. Even though many biological experiments have been performed in space since the 1960s, most of them have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, as well as utilized a broad range of technologies. Given the constraints of the deep space environment, however, future deep space biological missions will be limited to microbial organisms using miniaturized technologies. Small satellites like CubeSats are capable of querying relevant space environments using novel instruments and biosensors. CubeSats also provide a low-cost alternative to more complex and larger missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iteration of biological CubeSats will go farther. BioSentinel will be the first interplanetary CubeSat and the first biological study NASA has sent beyond Earth’s magnetosphere in 50 years. BioSentinel is an autonomous free-flyer platform able to support biology and to investigate the effects of radiation on a model organism in interplanetary deep space. The BioSensor payload contained within the free-flyer is also an adaptable instrument that can perform biologically relevant measurements with different microorganisms and in multiple space environments, including the ISS, lunar gateway, and on the surface of the Moon. Nanosatellites like BioSentinel can be used to study the effects of both reduced gravity and space radiation and can house different organisms or biosensors to answer specific scientific questions. Utilizing these biosensors will allow us to better understand the effects of the space environment on biology so humanity may return safely to deep space and venture farther than ever before.
机译:鉴于通过NASA和RSQUO(LEO)超越地球轨道(LEO)的即将到来的一系列任务,以及在月球和火星上潜在的基地建立,需要检查深度空间环境对生物学的影响,并需要保护对策发展。尽管自20世纪60年代以来,许多生物实验已经在太空中进行,但大多数在Leo发生了大多数,并且只有短暂的时间。这些Leo任务已经在各种模型生物中研究了许多生物学现象,以及利用广泛的技术。然而,鉴于深度空间环境的约束,未来的深空生物任务将限于使用小型化技术的微生物生物。小卫星等小型卫星能够使用新颖的仪器和生物传感器查询相关的空间环境。 CubeSats还提供更复杂和更大的任务的低成本替代品,如果有的话,需要最小的船员支持。几个已经部署在狮子座中,但是生物立方体的下一次迭代将走得更远。 Biosentinel将是第一个行星期性立方体,第一个生物学研究美国宇航局在50年内派出了大地和rsquo; S磁层。 Biosentinel是一种能够支持生物学的自主自由飞行器平台,并调查辐射对截然近距离空间的模型生物的影响。自由传单中包含的生物传感器有效载荷也是可适应性的仪器,可以使用不同的微生物和多个空间环境,包括ISS,月球网关以及月球表面的生物相关测量。纳米替肽如Biosentinel可用于研究减少重力和空间辐射的影响,并且可以容纳不同的生物体或生物传感器以回答特定的科学问题。利用这些生物传感器将使我们能够更好地了解空间环境对生物学的影响,因此人类可能会安全地返回到深度空间和比以往任何时候的冒险。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号