首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
【24h】

Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case

机译:将土壤水分和海洋盐度(SMOS)亮度温度分化为改善土壤水分预测的大型分布式概念水文模型:澳大利亚默里 - 达令盆地作为考验案例

获取原文
           

摘要

The main objective of this study is to investigate how brightness temperature observations from satellite microwave sensors may help to reduce errors and uncertainties in soil moisture and evapotranspiration simulations with a large-scale conceptual hydro-meteorological model. In addition, this study aims to investigate whether such a conceptual modelling framework, relying on parameter calibration, can reach the performance level of more complex physically based models for soil moisture simulations at a large scale. We use the ERA-Interim publicly available forcing data set and couple the Community Microwave Emission Modelling (CMEM) platform radiative transfer model with a hydro-meteorological model to enable, therefore, soil moisture, evapotranspiration and brightness temperature simulations over the Murray–Darling basin in Australia. The hydro-meteorological model is configured using recent developments in the SUPERFLEX framework, which enables tailoring the model structure to the specific needs of the application and to data availability and computational requirements. The hydrological model is first calibrated using only a sample of the Soil Moisture and Ocean Salinity (SMOS) brightness temperature observations (2010–2011). Next, SMOS brightness temperature observations are sequentially assimilated into the coupled SUPERFLEX–CMEM model (2010–2015). For this experiment, a local ensemble transform Kalman filter is used. Our empirical results show that the SUPERFLEX–CMEM modelling chain is capable of predicting soil moisture at a performance level similar to that obtained for the same study area and with a quasi-identical experimental set-up using the Community Land Model (CLM) . This shows that a simple model, when calibrated using globally and freely available Earth observation data, can yield performance levels similar to those of a physically based (uncalibrated) model. The correlation between simulated and in situ observed soil moisture ranges from 0.62 to 0.72 for the surface and root zone soil moisture. The assimilation of SMOS brightness temperature observations into the SUPERFLEX–CMEM modelling chain improves the correlation between predicted and in situ observed surface and root zone soil moisture by 0.03 on average, showing improvements similar to those obtained using the CLM land surface model. Moreover, at the same time the assimilation improves the correlation between predicted and in situ observed monthly evapotranspiration by 0.02 on average.
机译:本研究的主要目的是研究卫星微波传感器的亮度温度观察如何有助于通过大规模概念水流模型降低土壤水分和蒸散蒸腾模拟中的误差和不确定性。此外,本研究旨在调查这种概念建模框架是否依赖参数校准,可以大规模地达到更复杂的物理基础模型的性能水平。我们使用ERA-Instim公开可用的强制数据集并将社区微波发射模型(CMEM)平台辐射转移模型与水流模型进行,因此,在默里达令盆地的土壤水分,蒸发和亮度温度模拟能够实现在澳大利亚。水力气象模型使用SuperFlex框架的最新开发来配置,这使得模型结构使应用程序的特定需求和数据可用性和计算要求定制。首先使用土壤湿度和海洋盐度(SMOS)亮度温度观察(2010-2011)的样品校准水文模型。接下来,将SMOS亮度温度观察顺序地同化到偶联的SuperFlex-CMEM模型(2010-2015)中。对于此实验,使用局部集合变换卡尔曼滤波器。我们的经验结果表明,SuperFlex-CMEM建模链能够在类似于对同一研究区域获得的性能水平的性能水平和使用社区土地模型(CLM)的准相同的实验设置时预测土壤水分。这表明,一种简单的模型,当使用全球和自由的地球观测数据进行校准时,可以产生与物理上(未校准)模型类似的性能水平。模拟和原位观察土壤水分之间的相关性为表面和根带土壤水分的0.62至0.72。 SMOS亮度温度观察到SuperFlex-CMEM建模链的同化性改善了预测和原位观察到的表面和根部区域土壤水分的相关性,平均值,显示与使用CLM陆地表面模型获得的那些类似的改进。此外,同时,同化提高预测和原位之间的相关性平均每月蒸散0.02之间的相关性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号