首页> 外文期刊>Npj Quantum Information >Machine learning aided carrier recovery in continuous-variable quantum key distribution
【24h】

Machine learning aided carrier recovery in continuous-variable quantum key distribution

机译:机器学习辅助载波恢复在连续变量量子密钥分布中

获取原文
           

摘要

The secret key rate of a continuous-variable quantum key distribution (CV-QKD) system is limited by excess noise. A key issue typical to all modern CV-QKD systems implemented with a reference or pilot signal and an independent local oscillator is controlling the excess noise generated from the frequency and phase noise accrued by the transmitter and receiver. Therefore accurate phase estimation and compensation, so-called carrier recovery, is a critical subsystem of CV-QKD. Here, we explore the implementation of a machine learning framework based on Bayesian inference, namely an unscented Kalman filter (UKF), for estimation of phase noise and compare it to a standard reference method and a previously demonstrated machine learning method. Experimental results obtained over a 20-km fibre-optic link indicate that the UKF can ensure very low excess noise even at low pilot powers. The measurements exhibited low variance and high stability in excess noise over a wide range of pilot signal to noise ratios. This may enable CV-QKD systems with low hardware implementation complexity which can seamlessly work on diverse transmission lines.
机译:连续变量量子密钥分布(CV-QKD)系统的秘密密钥率受到过度噪声的限制。用参考或导频信号和独立本地振荡器实现的所有现代CV-QKD系统典型的关键问题是控制由发射机和接收器累计的频率和相位噪声产生的过量噪声。因此,精确的相位估计和补偿,所谓的载体恢复,是CV-QKD的关键子系统。在这里,我们探讨了基于贝叶斯推断的机器学习框架的实现,即易于的卡尔曼滤波器(UKF),用于估计相位噪声并将其与标准参考方法和先前演示的机器学习方法进行比较。在20公里的光纤链路上获得的实验结果表明,即使在低导频,UKF也可以确保极低的噪音。测量结果表现出低方差和高噪声在多种导频信号到噪声比率上的噪声的高稳定性。这可以使具有低硬件实现复杂性的CV-QKD系统,其可以无缝地工作在不同的传输线路上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号