首页> 外文期刊>Ecosphere >Dynamics of necromass in woody Australian ecosystems
【24h】

Dynamics of necromass in woody Australian ecosystems

机译:Necromass在木质澳大利亚生态系统中的动态

获取原文
           

摘要

Litterfall (LF) is the major contributor to aboveground necromass in ecosystems. Litter decomposition or litter decay (LD) then offsets deposition in LF, with the balance of LF and LD determining the standing litter (SL). SL together with fine and coarse woody debris (FWD, CWD) are the largest necromass pools. The interactions of LF, SL, and LD at continental scales reflect carbon and nutrient cycling and other ecosystem processes. We compiled data on leaf, twig (<2.6?cm), and other material (mostly bark and reproductive tissue) for SL and LF for the fire‐prone Australian continent, where SL is also a major “fuel load” and important for fire spread and fire intensity. We extracted data from 498 published and unpublished works (1825 LF observations;n SL?=?3914;n LD?=?629). We used Olson’s (mass‐balance) approach (k ???LF/SL) to calculate LD for sites long undisturbed with both LF and SL data. We compiled LF and SL by component (leaves, twigs, other material) and metainformation such as sampling location, tree species, or time since fire from literature and/or scientists. Most data were available from warm‐seasonal (36% for SL) and cool‐wet (31%) climates, linking the locations of our data with a bio‐climate classification. Warm‐wet (20%) and hot‐seasonal (8%) climates followed, while other climate zones each contributed <2% of the data. Across all climatic zones, average SL (1100?g/m~(2)) was roughly twice that of LF (468?g·m~(?2)·yr~(?1)). SL was greatest in cold climates (2334?g/m~(2)), compared to warm‐wet (1168?g/m~(2)) and hot‐seasonal conditions (499?g/m~(2)). Important drivers of SL are LD (e.g., slow under cold conditions) and fire frequency. Olson’sk varied with type of decomposing material (“composition”). For example, across the continent,k ???1.942?yr~(?1)for leaves but was 0.504?yr~(?1)for twigs. SL varied strongly in composition according to climate type (e.g., seasonal vs. wet climates). Robust models of necromass dynamics must distinguish between the litter components (such as leaves and twigs) and consider the complex and non‐linear effects of climate, stand structure, and stand history on litterfall and decomposition.
机译:落草(LF)是生态系统上面的主要贡献者。垃圾分解或垃圾衰减(LD)然后在LF中沉积沉积,利用LF和LD的平衡确定驻留垃圾(SL)。 SL与精细和粗糙的木质碎片(FWD,CWD)是最大的乳房池。 LF,S1和LD在大陆尺度的相互作用反映了碳和营养循环和其他生态系统过程。我们编制了叶子​​,枝条(<2.6?cm)和其他材料(大多数树皮和生殖组织)的数据,为SL和LF为火灾易受澳大利亚大陆,其中SL也是一个主要的“燃料载荷”,对火灾重要传播和火力强度。我们从498名发布和未发表的作品中提取了数据(1825 LF观察; n sl?=?3914; n ld?=?629)。我们使用Olson的(质量平衡)方法( k ??? lf / sl)来计算LD的LD,不受LF和SL数据不受干扰。我们通过组件(叶子,树枝,其他材料)和梅纳林信息(例如文学和/或科学家)的采样位置,树种或时间编制了LF和SL。大多数数据可从季节性季节性(SL)和凉爽湿润(31%)气候获得,将我们数据的位置与生物气候分类联系起来。温度湿润(20%)和热季节性(8%)气候,而其他气候区各自贡献了<2%的数据。在所有气候区域,平均S1(1100?G / m〜(2))大致两倍于LF(468Ω·G·m〜(?2)·Yr〜(?1))。与温湿性相比。 SL的重要驱动程序是LD(例如,在冷条件下缓慢)和射频。 Olson的 K随着分解材料的类型而变化(“成分”)。例如,在整个大陆, k ??? 1.942?Yr〜(?1)用于叶子,但为枝条为0.504〜(?1)。根据气候型(例如,季节性与湿气候),SL在组合物中强烈变化。 Necromass动力学的强大模型必须区分垃圾组件(​​例如叶子和树枝),并考虑气候,站立结构和落下血迹历史的复杂和非线性效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号