首页> 外文期刊>Applied Microbiology >Redox Coenzyme F420 Biosynthesis in Thermomicrobia Involves Reduction by Stand-Alone Nitroreductase Superfamily Enzymes
【24h】

Redox Coenzyme F420 Biosynthesis in Thermomicrobia Involves Reduction by Stand-Alone Nitroreductase Superfamily Enzymes

机译:Redox Coenyme F420 Thermoficrobia中的生物合成涉及通过独立的硝化酶超细酶减少

获取原文
           

摘要

Coenzyme F_(420) is a redox cofactor involved in hydride transfer reactions in archaea and bacteria. Since F_(420)-dependent enzymes are attracting increasing interest as tools in biocatalysis, F_(420) biosynthesis is being revisited. While it was commonly accepted for a long time that the 2-phospho-l-lactate (2-PL) moiety of F_(420) is formed from free 2-PL, it was recently shown that phosphoenolpyruvate is incorporated in Actinobacteria and that the C-terminal domain of the FbiB protein, a member of the nitroreductase (NTR) superfamily, converts dehydro-F_(420) into saturated F_(420). Outside the Actinobacteria , however, the situation is still unclear because FbiB is missing in these organisms and enzymes of the NTR family are highly diversified. Here, we show by heterologous expression and in vitro assays that stand-alone NTR enzymes from Thermomicrobia exhibit dehydro-F_(420) reductase activity. Metabolome analysis and proteomics studies confirmed the proposed biosynthetic pathway in Thermomicrobium roseum . These results clarify the biosynthetic route of coenzyme F_(420) in a class of Gram-negative bacteria, redefine functional subgroups of the NTR superfamily, and offer an alternative for large-scale production of F_(420) in Escherichia coli in the future.IMPORTANCE Coenzyme F_(420) is a redox cofactor of Archaea and Actinobacteria , as well as some Gram-negative bacteria. Its involvement in processes such as the biosynthesis of antibiotics, the degradation of xenobiotics, and asymmetric enzymatic reductions renders F_(420) of great relevance for biotechnology. Recently, a new biosynthetic step during the formation of F_(420) in Actinobacteria was discovered, involving an enzyme domain belonging to the versatile nitroreductase (NTR) superfamily, while this process remained blurred in Gram-negative bacteria. Here, we show that a similar biosynthetic route exists in Thermomicrobia , although key biosynthetic enzymes show different domain architectures and are only distantly related. Our results shed light on the biosynthesis of F_(420) in Gram-negative bacteria and refine the knowledge about sequence-function relationships within the NTR superfamily of enzymes. Appreciably, these results offer an alternative route to produce F_(420) in Gram-negative model organisms and unveil yet another biochemical facet of this pathway to be explored by synthetic microbiologists.
机译:辅酶F_(420)是氧化还原辅因子,涉及胆晶转移反应在古痤疮和细菌中。由于F_(420) - 依赖性酶被吸引越来越兴趣作为生物分析中的工具,因此正在重新审视F_(420)生物合成。虽然常见于很长​​一段时间,但是F_(420)的2-磷酸-1-乳酸(2-PL)部分由Free 2-PL形成,最近显示磷酸丙磺酸盐在actinobacteria中并入其中FBIB蛋白的C-末端域,亚硝基酶(NTR)超家族的成员,将脱氢-Fα(420)转化为饱和F_(420)。然而,在actinobacteria之外,情况仍然尚不清楚,因为在这些生物体中缺少FBIB,NTR家族的酶很多。在此,我们通过异源表达和体外测定来展示来自Hemotomicrobia的独立的NTR酶表现出脱氢-Fα(420)还原酶活性。代谢分析和蛋白质组学研究证实了紫罗兰植物中所提出的生物合成途径。这些结果阐明了一类革兰氏阴性细菌中的辅酶F_(420)的生物合成途径,重新定义了NTR超级家族的功能亚组,并在未来大肠杆菌中提供了大规模生产的替代方案(420)。重要性辅酶F_(420)是古代和抗菌菌的氧化还原辅因子,以及一些革兰氏阴性细菌。它参与抗生素的生物合成等方法,异恶菌剂的降解和不对称酶促减少的F_(420)对生物技术的巨大相关性。最近,发现了在肌肌细菌的F_(420)形成的新生物合成步骤,涉及属于多功能硝化酶(NTR)的酶结构域,而该过程仍然在革兰氏阴性细菌中模糊。在这里,我们表明热心可测量中存在类似的生物合成途径,尽管主要的生物合成酶显示不同的域架构,并且只是远方相关。我们的结果在革兰氏阴性细菌中的F_(420)的生物合成上,并优化了酶中NTR中的序列功能关系的知识。明显地,这些结果提供了在革兰氏阴性模型生物中产生F_(420)的替代途径,并通过合成微生物学家揭示该途径的另一种生化方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号