...
首页> 外文期刊>Coatings >Effect of NiO Nanoparticle Addition on the Structural, Microstructural, Magnetic, Electrical, and Magneto-Transport Properties of La0.67Ca0.33MnO3 Nanocomposites
【24h】

Effect of NiO Nanoparticle Addition on the Structural, Microstructural, Magnetic, Electrical, and Magneto-Transport Properties of La0.67Ca0.33MnO3 Nanocomposites

机译:NiO纳米粒子添加对LA0.67CA0.33MNO3纳米复合材料的结构,微结构,磁,电,电气和磁传递性能的影响

获取原文
           

摘要

Incorporation of the secondary oxide phase into the manganite composite capable of enhancing low-field magnetoresistance (LFMR) for viability in high-performance spintronic applications. Polycrystalline La0.67Ca0.33MnO3 (LCMO) was prepared via the sol–gel route in this study. The structural, microstructural, magnetic, electrical, and magneto-transport properties of (1?x) LCMO: x NiO, x = 0.00, 0.05, 0.10, 0.15 and 0.20 were investigated in detail. The X-ray diffraction (XRD) patterns showed the coexistence of LCMO and NiO in the composites. The microstructural analysis indicated the amount of NiO nanoparticles segregated at the grain boundaries or on the surface of LCMO grains increased with the increasing secondary phase content. LCMO and NiO still retained their individual magnetic phase as observed from AC susceptibility (ACS) measurement. This further confirmed that there is no interfacial diffusion reaction between these two compounds. The NiO nanoparticle acted as a barrier to charge transport and caused an increase in resistivity for composite samples. The residual resistivity due to the grain/domain boundary is responsible for the scattering mechanism in the metallic region as suggested by the theoretical model fitting, ρ(T)=ρ0 ρ2T2 ρ4.5T4.5. The magnetoresistance values of LCMO and its composites were found to increase monotonically with the decrease in temperature. Hence, the LFMR was observed. Nonetheless, the slight reduction of LFMR in composites was attributed to the thick boundary layer created by NiO and impaired the spin polarised tunnelling process.
机译:将二次氧化物相掺入锰岩复合物中,能够在高性能旋转性应用中增强低场磁阻(LFMR)的活性。通过本研究中的溶胶 - 凝胶途径制备多晶LA0.67CA0.33MNO3(LCMO)。详细研究了(1?X)LCMO:X NiO,X = 0.0.05,0.10,0.15和0.20的结构,微观结构,磁,电气和磁传输性能。 X射线衍射(XRD)图案显示LCMO和NIO在复合材料中的共存。微观结构分析表明在晶界或LCMO晶粒表面上分离的NiO纳米颗粒的量随着等级相含量的增加而增加。 LCMO和NIO仍然保留了从AC敏感度(ACS)测量的观察到的各个磁阶段。这进一步证实这两个化合物之间没有界面扩散反应。 NIO纳米粒子用作电荷输送的屏障,并导致复合样品的电阻率增加。由于晶粒/畴边界引起的剩余电阻率负责金属区域中的散射机制,如理论模型拟合,ρ(t)=ρ0ρ2t2ρ4.5t4.5所示。发现LCMO及其复合材料的磁阻值随着温度的降低而单调增加。因此,观察到LFMR。尽管如此,复合材料中LFMR的轻微减少归因于NIO产生的厚边界层并损害自旋极化隧道工艺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号