...
首页> 外文期刊>Coatings >Electron Transfer through a Natural Oxide Layer on Real Metal Surfaces Occurring during Sliding with Polytetrafluoroethylene: Dependence on Heat of Formation of Metal Oxides
【24h】

Electron Transfer through a Natural Oxide Layer on Real Metal Surfaces Occurring during Sliding with Polytetrafluoroethylene: Dependence on Heat of Formation of Metal Oxides

机译:通过在与聚四氟乙烯滑动期间发生的真正金属表面上的天然氧化物层的电子转移:依赖金属氧化物的形成热量

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Electron emission (EE) from real metal surfaces occurring during sliding contact with a polytetrafluoroethylene (PTFE) rider has been investigated using the thermodynamic data of metal oxides and the X-ray photoelectron spectroscopy (XPS) intensity ratio of oxygen/metal on the surfaces. EE was termed triboelectron emission (TriboEE). Rolled metal sheets of 18 types were used. The metal?oxygen bond energy calculated from the heat of the formation of metal oxide, (D(M–O)), was shown to be a key factor in dividing the EE into two routes, the so-called Schottky effect and the tunnel effect, due to the surface oxide layer. The metals in periodic groups 4 (Ti and Zr), 5 (V, Nb, and Ta), and 6 (Mo and W) maintained higher values of D(M–O), while, moving down the groups, the TriboEE intensity increased, being ascribed to the former route. In groups 10 (Ni, Pd, and Pt) and 11 (Cu, Ag, and Au), the D(M–O) values decreased moving down the groups, but the TriboEE intensity increased significantly, which can be attributed to the latter route. Furthermore, with the increase in the electrical conductivity of metals, the TriboEE intensity became remarkably high, while the D(M–O) value fell rapidly and became almost constant. The XPS results showed that the dependence of the D(M–O) and XPS metal core intensity on the O1s intensity and the XPS intensity ratio of the O1s/metal core was different between groups 10 and 11 and groups 4, 5, and 6. It was concluded that, under the electric field caused on the real metal surface by the friction with PTFE, the electron from metals with small D(M–O) values predominantly tunnels the surface oxide layer as a surface barrier, while with large D(M–O) values, the electron passes over the top of the barrier.
机译:已经研究了在与聚四氟乙烯(PTFE)骑手的滑动接触期间发生的真实金属表面的电子发射(EE),使用金属氧化物的热力学数据和表面上的氧化氧金属的X射线光电子能谱(XPS)强度比。 EE被称为摩擦电力排放(嫁质)。使用轧制金属板18种。金属α从属于金属氧化物的热量计算(D(M-O))的氧粘合能,被证明是将EE分成两条路线的关键因素,所谓的肖特基效应和隧道效果,由于表面氧化物层。定期组4(Ti和Zr),5(V,Nb和Ta)和6(Mo和W)的金属保持较高的D(M-O)值,而下降组,嫁质强度增加,归于前途径。在第10组(Ni,Pd和Pt)和11(Cu,Ag和Au)中,D(M-O)值下降下降,但婚面积强度显着增加,这可以归因于后者路线。此外,随着金属的电导率的增加,德国强度变得非常高,而D(M-O)值迅速下降,并且变得几乎是恒定的。 XPS结果表明,D(M-O)和XPS金属核心强度对O1S /金属核心的XPS强度比的依赖性在10和11组和第4组和第4组之间不同。得出结论,在通过用PTFE的摩擦引起的真实金属表面引起的电场下,具有小于D(M-O)值的金属的电子主要将表面氧化物层作为表面屏障隧道,而具有大D (M-O)值,电子通过屏障的顶部。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号