首页> 外文期刊>Computational and Structural Biotechnology Journal >Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein
【24h】

Temperature effect on the SARS-CoV-2: A molecular dynamics study of the spike homotrimeric glycoprotein

机译:对SARS-COV-2的温度效应:穗均二萜胶蛋白的分子动力学研究

获取原文
           

摘要

Rapid spread of SARS-CoV-2 virus have boosted the need of knowledge about inactivation mechanisms to minimize the impact of COVID-19 pandemic. Recent studies have shown that SARS-CoV-2 virus can be disabled by heating, the exposure time for total inactivation depending on the reached temperature ( e.g. more than 45?min at 329?K or less than 5?min at 373?K. In spite of recent crystallographic structures, little is known about the molecular changes induced by the temperature. Here, we unravel the molecular basis of the effect of the temperature over the SARS-CoV-2 spike glycoprotein, which is a homotrimer with three identical monomers, by executing atomistic molecular dynamics (MD) simulations at 298, 310, 324, 338, 358 and 373?K. Furthermore, both the closed down and open up conformational states, which affect the accessibility of receptor binding domain, have been considered. Our results suggest that the spike homotrimer undergoes drastic changes in the topology of the hydrogen bonding interactions and important changes on the secondary structure of the receptor binding domain (RBD), while electrostatic interactions ( i.e. salt bridges) are mainly preserved. The proposed inactivation mechanism has important implications for engineering new approaches to fight the SARS-CoV-2 coronavirus, as for example, cleaving or reorganizing the hydrogen bonds through chaotropic agents or nanoparticles with local surface resonant plasmon effect.
机译:SARS-COV-2病毒的快速传播提高了有关灭活机制的知识,以最大限度地减少Covid-19大流行的影响。最近的研究表明,通过加热可以禁用SARS-COV-2病毒,根据达到的温度(例如,在329 k的329 k或小于5Ω·k的大于45Ω·k或小于5Ω·k的情况下,暴露的灭活时间(例如超过45Ω·k。尽管最近的晶体结构,关于温度诱导的分子变化很少。在这里,我们解开了温度对SARS-COV-2穗糖蛋白的影响的分子基础,这是一种具有三种相同单体的同源体,通过在298,310,324,338,358和373Ω·k处执行原子分子动力学(MD)模拟。此外,已经考虑了影响受体结合结构域的可通过的闭合和开放构象状态。我们的研究结果表明,尖刺同源型在氢键相互作用的拓扑中进行了大幅变化,以及受体结合结构域(RBD)的二次结构的重要变化,而静电相互作用(即SA LT桥梁主要保留。所提出的灭活机制对于对抗SARS-COV-2冠状病毒的工程新方法具有重要意义,例如,通过具有局部表面共振等离子体效应的络合物或纳米颗粒切割或重组氢键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号