首页> 外文期刊>IEEE Transactions on Dielectrics and Electrical Insulation >Factors influencing the discharge mode for microsecond-pulse gliding discharges at atmospheric pressure
【24h】

Factors influencing the discharge mode for microsecond-pulse gliding discharges at atmospheric pressure

机译:影响大气压下微秒脉冲滑行放电的放电方式的因素

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents experimental results on different discharge modes for microsecond-pulse gliding discharges and their transition, and then analyzes the effect of the gap distance and flow rate on the discharge modes. The current amplitude, energy consumption per pulse and voltage range are used to reflect some discharge characteristics of discharge modes. The results show that there are three discharge modes for microsecond-pulse gliding discharges, i.e. the corona, diffuse and spark. Among the three modes, the values of the amplitude of the discharge current and the energy consumption per pulse for corona mode are lowest, then the diffuse mode and spark mode accordingly. When the gap spacing is smaller than 5 mm, there is no diffuse mode, and the corona discharges directly transit to spark discharges with the increase of the voltage. When the gap spacing is or more than 5 mm, the corona-diffuse-spark mode transition with the increase of the voltage is observed. The voltage range for diffuse discharge increases with the gap spacing. Moreover, when the flow rate increases, the ignition voltage for spark discharges increases, but the ignition voltage for diffuse discharges slightly changes, resulting in the voltage range for diffuse discharges increases. Therefore, diffuse mode is more likely to be obtained in a large gap with a relatively high flow rate.
机译:这项工作介绍了微秒脉冲滑行放电及其过渡的不同放电模式的实验结果,然后分析了间隙距离和流速对放电模式的影响。电流幅度,每脉冲能量消耗和电压范围用于反映放电模式的某些放电特性。结果表明,微秒脉冲滑行放电有三种放电模式,即电晕放电,扩散放电和火花放电。在这三种模式中,电晕模式的放电电流幅度值和每个脉冲的能耗最低,其次是扩散模式和火花模式。当间隙间隔小于5mm时,没有扩散模式,并且随着电压的增加,电晕放电直接转变为火花放电。当间隙间隔大于或等于5mm时,观察到电晕扩散火花模式随着电压的增加而转变。扩散放电的电压范围随着间隙间距的增加而增加。此外,当流量增加时,用于火花放电的点火电压增加,但是用于扩散放电的点火电压略有变化,导致用于扩散放电的电压范围增大。因此,更可能在较大间隙中以相对较高的流速获得扩散模式。

著录项

  • 来源
  • 作者单位

    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China, University of Chinese Academy of Sciences, Beijing, 100039, China;

    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China;

    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China;

    School of Electrical Engineering, Wuhan University, Wuhan, 430072, China;

    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China, University of Chinese Academy of Sciences, Beijing, 100039, China;

    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China, University of Chinese Academy of Sciences, Beijing, 100039, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discharges (electric); Sparks; Corona; Plasmas; Fault location; Energy consumption;

    机译:放电(电);火花;电晕;等离子体;故障位置;能耗;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号