首页> 外文期刊>Earthquake Engineering & Structural Dynamics >Device uncertainty propagation in low-ductility RC frames retrofitted with BRBs for seismic risk mitigation
【24h】

Device uncertainty propagation in low-ductility RC frames retrofitted with BRBs for seismic risk mitigation

机译:低延展性RC框架中的设备不确定化传播与BRB进行了改装以进行地震风险缓解

获取原文
获取原文并翻译 | 示例
           

摘要

Passive control systems, such as buckling-restrained braces (BRBs), have emerged as efficient tools for seismic response control of new and existing structures by imparting strength and stiffness to buildings, while providing additional high and stable energy dissipation capacity. Systems equipped with BRBs have been widely investigated in literature; however, only a deterministic description of the BRBs' properties is typically considered. These properties are provided by the manufacturer and are successively validated by qualification control tests according to code-based tolerance limits. Therefore, the device properties introduced within the structure could differ from their nominal design estimates, potentially leading to an undesired seismic performance. This study proposes a probabilistic assessment framework to evaluate the influence of BRBs' uncertainty on the seismic response of a retrofitted RC frame. For the case study, a benchmark three-story RC moment-resisting frame is considered where BRBs' uncertainty is defined compatible to the standardized tolerance limits of devices' quality control tests. This uncertainty is implemented through a two-level factorial design strategy and Latin hypercube sampling technique. Cloud analysis and probabilistic seismic demand models are used to develop fragility functions for the bare and retrofitted frame for four damage states while also accounting for the uncertainty in the property of BRBs. Risk estimates are successively evaluated for three case study regions. The results show that, for the considered case study structure, these uncertainties could lead to an increase of fragility up to 21% and a variation in seismic risk estimates up to 56%.
机译:被动控制系统,例如屈曲受限制的括号(BRB),通过赋予建筑物的强度和刚度,提供了新的和现有结构的高效工具,用于提供额外的高且稳定的能量耗散能力。配备BRB的系统已在文献中得到广泛调查;然而,通常仅考虑对BRBS的特性的确定性描述。这些属性由制造商提供,并且根据基于代码的公差限制,通过资格控制测试连续验证。因此,在结构内引入的器件可能与其标称设计估计不同,可能导致不希望的地震性能。本研究提出了一种概率评估框架,以评估BRBS对RC帧的地震反应的影响。对于案例研究,认为基准三层RC力矩抵抗框架,其中BRBS的不确定性与设备质量控制测试的标准化公差限制兼容。这种不确定性是通过两级因子设计策略和拉丁超立体采样技术实施的。云分析和概率地震需求模型用于为四个损害状态的裸露和改装框架开发脆弱功能,同时还占BRBS性质的不确定性。 3个案例研究区域连续评估风险估计。结果表明,对于所考虑的案例研究结构,这些不确定性可能导致增加脆弱性高达21%,地震风险估算的变化高达56%。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号