...
首页> 外文期刊>Energy Conversion & Management >Recovery of cold energy from liquefied natural gas regasification: Applications beyond power cycles
【24h】

Recovery of cold energy from liquefied natural gas regasification: Applications beyond power cycles

机译:从液化天然气再气化中回收冷能:重启后的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Liquefied natural gas releases large amounts of cold energy during the conventional regasification process. Currently, most studies have investigated the opportunities to utilize this waste cold for power cycles but few studies considered using this cold directly on other cold applications. In this paper, different cold recovery approaches are considered and compared depending on the energy carriers (i.e. electricity, liquid carbon dioxide, chilled water, liquid airitrogen and latent heat storage) used to support a few cold applications (i.e. air separation units, dry ice production, freezing and district cooling). Using different transportation methods, these energy carriers produced using the recovered cold as part or all of their energy input is coupled to these cold applications with different temperature requirements and located 5 km away from the regasification facilities. This paper investigates the change in overall exergy efficiency and carbon dioxide emissions throughout the whole process from energy carrier generation to their consumption in the cold applications when the cold applications are coupled to different alternative energy carriers, compared with the baseline case. With the availability of these alternative energy carriers, conventional cold applications can be modified to reduce their dependency on electricity and improve their performance. The baseline setup has an overall exergy efficiency of approximate to 13% while using electricity generated by waste cold assisted power cycles as energy carrier yields overall exergy efficiency of approximate to 13.2%. Using alternative energy carriers charged with recovered cold, such as liquid carbon dioxide/water, latent heat thermal storage and liquid nitrogen, yields lower overall exergy efficiencies of approximate to 9.7%, 11.5% and 10.2%, respectively which is largely due to the temperature mismatch and thus large amount of exergy destructions during the heat exchange process. For the carbon dioxide emissions analysis, the baseline setup yields carbon dioxide emissions of approximate to 22.3 kTPA. Using electricity generated with waste cold assisted power cycle yields improvement on carbon dioxide emissions of approximate to 18.3% while those using alternative energy carriers yield improvements on carbon dioxide emissions of approximate to 38.0%, approximate to 37.0% and approximate to 6.0%, respectively.
机译:液化天然气在常规的再气化过程中释放大量的冷能。当前,大多数研究都研究了将这种废冷机用于电源循环的机会,但很少有研究考虑将这种冷机直接用于其他冷机。在本文中,考虑并比较了不同的冷恢复方法,具体取决于用于支持一些冷应用(例如空气分离装置,空气分离器,干冰生产,冷冻和区域冷却)。使用不同的运输方法,将回收的冷气作为其部分或全部能量输入所产生的这些能量载体,将以不同的温度要求耦合到这些冷气应用中,并且距离再气化设施5公里。与基准案例相比,本文研究了在将冷应用与不同的替代能源载体耦合时,从能源载体生成到其在冷应用中的消耗的整个过程中,总火用效率和二氧化碳排放量的变化。有了这些替代能源载体,可以对常规的冷应用进行修改,以减少它们对电的依赖并提高其性能。基准线设置的总火用效率约为13%,同时使用废冷辅助功率循环产生的电作为能量载体,产生的总火用效率约为13.2%。使用充有回收的冷气的替代能源载体,例如液态二氧化碳/水,潜热蓄热和液态氮,产生的总火用效率较低,分别约为9.7%,11.5%和10.2%,这主要是由于温度不匹配,从而在热交换过程中会产生大量的火用破坏。对于二氧化碳排放量分析,基准设置产生的二氧化碳排放量约为22.3 kTPA。使用由废冷辅助动力循环产生的电力可使二氧化碳排放量减少约18.3%,而使用替代能源载体的电力可使二氧化碳排放量分别减少约38.0%,约37.0%和约6.0%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号