首页> 外文期刊>Energy Conversion & Management >Sensitivity analysis of supercritical CO_2 power cycle energy and exergy efficiencies regarding cycle component efficiencies for concentrating solar power
【24h】

Sensitivity analysis of supercritical CO_2 power cycle energy and exergy efficiencies regarding cycle component efficiencies for concentrating solar power

机译:超临界CO_2功率循环能量和火用效率的敏感性分析,涉及用于集中太阳能的循环组件效率

获取原文
获取原文并翻译 | 示例
           

摘要

Supercritical CO2 cycles have been said to be a good alternative to the Rankine Cycles for Concentrating Solar Power plants of the future. The next generation molten salts will be able to achieve 700 degrees C, which is a suitable temperature for Supercritical CO2 cycles. However, there is a big uncertainty about the efficiencies of the cycle components, which could make these cycles unviable. A sensitivity analysis of the energy efficiency of the Recompression Cycle and Partial Cooling Cycle, regarding turbomachinery isentropic efficiencies and Recuperator effectiveness variations, has been carried out to show that the Recompression Cycle's energy efficiency is considerably more sensitive than the Partial Cooling Cycle's. From the sensitivity analysis, it can also be concluded that the Recompression Cycle is the best performing cycle for most of the studied cases, with energy efficiencies in the range between 32.97% and 51.91%. Exergetically, the Recompression Cycle is also more suitable in most situations, and the exergy analysis on cycle components shows that irreversibilities occur mainly in the Recuperators, which means that future research should focus on methods to reduce irreversibilities in these components.The state-of-the-art of Supercritical Rankine Cycle plant net energy efficiencies currently reach 45.60% for fossil fuel plants. Although Supercritical CO2 cycles are a simpler and more compact alternative, this work concludes that only the optimized Recompression Cycle with turbomachinery isentropic efficiencies over 92% and Recuperator effectiveness over 95% are able to obtain similar or higher efficiencies than actual Supercritical Rankine Cycles. Furthermore, the sensitivity analysis plots permit the areas to be mapped where each of the optimized two-cycle efficiencies can compete with the Supercritical Rankine Cycles regarding the turbo machinery isentropic efficiencies and Recuperator effectiveness.
机译:据说超临界CO2循环是未来兰肯循环的最佳选择,可替代未来的聚光太阳能发电厂。下一代熔融盐将能够达到700摄氏度,这是超临界CO2循环的合适温度。但是,周期组件的效率存在很大的不确定性,这可能会使这些周期不可行。针对涡轮机械的等熵效率和换热器效率变化,对再压缩循环和部分冷却循环的能量效率进行了敏感性分析,显示出再压缩循环的能量效率比部分冷却循环的能量效率要敏感得多。从灵敏度分析中还可以得出结论,对于大多数研究案例,再压缩周期是性能最佳的周期,能量效率在32.97%至51.91%之间。从运动上来说,再压缩循环在大多数情况下也更适合,并且对循环成分的火用分析表明不可逆性主要发生在换热器中,这意味着未来的研究应侧重于减少这些成分中不可逆性的方法。目前,化石燃料发电厂的超临界朗肯循环电厂的净能源效率达到了45.60%。尽管超临界CO2循环是一种更简单,更紧凑的替代方案,但这项工作得出的结论是,只有涡轮机械等熵效率超过92%,换热器效率超过95%的优化再压缩循环,才能获得与实际超临界朗肯循环相似或更高的效率。此外,灵敏度分析图允许绘制区域,在这些区域中,关于涡轮机械的等熵效率和换热器效率,每个优化的两个循环效率都可以与超临界朗肯循环竞争。

著录项

  • 来源
    《Energy Conversion & Management》 |2019年第2期|430-450|共21页
  • 作者单位

    Univ Basque Country, Fac Engn Bilbao, Dept Thermal Engn, UPV EHU, Alda Urquijo S-N, Bilbao 48013, Spain|SENER Ingn & Sistemas SA, Dept Mech Engn, Avda Zugazarte 56, Getxo 48930, Spain;

    Univ Basque Country, Fac Engn Bilbao, Dept Thermal Engn, UPV EHU, Alda Urquijo S-N, Bilbao 48013, Spain;

    Univ Basque Country, Fac Engn Bilbao, Dept Thermal Engn, UPV EHU, Alda Urquijo S-N, Bilbao 48013, Spain;

    SENER Ingn & Sistemas SA, Dept Mech Engn, Avda Zugazarte 56, Getxo 48930, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Supercritical CO2; Recompression Cycle; Partial Cooling Cycle; Sensitivity analysis; Exergy; Concentrating solar power;

    机译:超临界二氧化碳;再压缩循环;部分冷却循环;灵敏度分析;火用;聚光太阳能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号