...
首页> 外文期刊>Energy Conversion & Management >Thermaly integrated five-step ZnSI thermochemical cycle hydrogen production process using solar energy
【24h】

Thermaly integrated five-step ZnSI thermochemical cycle hydrogen production process using solar energy

机译:热拉集成五步ZNSI热化学循环氢气生产过程利用太阳能

获取原文
获取原文并翻译 | 示例
           

摘要

The main target of this study is to apply thermal integration on a five-steps ZnSI thermochemical hydrogen production cycle in order to improving the process efficiency. In this process water enters the Bunsen system at a 298 K, 1 bar with flow rate of 0.5 mol/s, and CO2 is the input stream into the zinc system at 298 K and 1 bar. Oxygen and CO are output streams of Bunsen and zinc systems, respectively. Hydrogen is output of the HI system, which is obtained as a final product at 313 K, 1 bar with the flow rate of 0.5 mol/s. A solar thermal system which uses solar dish collector is applied in order to provide a portion of the required thermal load in the process. Modeling of the solar system is done through Matlab software. By using ZnSI instead of SI process, temperature of reaction decreases. Also hydrogen and carbon monoxide are produced. The results demonstrate that by this modification number of units of the Zn system reduces and the chemical process is simplified. By performing thermal integration, heat duty of the system decreases and accordingly thermal efficiency increase by 61.06%. As well as, the minimum required hot and cold utilities decrease by 51.94% and 65.52%, respectively. Solar fraction and collector thermal efficiency were obtained 42.57% and the 82% respectively. Finnaly a parametric assessment is done on the key parameters which influence performance of the process.
机译:本研究的主要目标是在五步ZNSI热化学氢生产周期上施加热整合,以提高工艺效率。在该过程中,水在298K,1巴的BUNSEN系统进入0.5mol / s的流速,并且CO 2在298k和1巴的锌系统中输入流。氧气和CO分别是Bunsen和锌系统的输出流。氢气的HI系统输出,其在313k,1巴的最终产物中获得,流速为0.5mol / s。应用了使用太阳能电池收集器的太阳能热系统,以便在该过程中提供一部分所需的热负荷。通过MATLAB软件进行太阳系的建模。通过使用ZnSI而不是Si工艺,反应温度降低。还生产氢和一氧化碳。结果表明,通过这种修改Zn系统的单位数减少,简化了化学过程。通过进行热整合,系统的热义降低,因此热效率增加61.06%。除此之外,所需的最低冷热和寒冷的公用事业分别降低51.94%和65.52%。优越的馏分和收集器热效率分别获得42.57%和82%。 Finnaly在影响过程性能的关键参数上进行参数评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号