...
首页> 外文期刊>Energy Conversion & Management >Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling
【24h】

Thermodynamic analysis and optimization of a molten salt solar power tower integrated with a recompression supercritical CO2 Brayton cycle based on integrated modeling

机译:基于集成建模的再压缩超临界CO2布雷顿循环热熔盐太阳能塔热力学分析与优化

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, a molten salt solar power tower (SPT) system integrated with a S-CO2 Brayton cycle is presented. An integrated model is developed for the integrated SPT system including the heliostat field, the molten salt solar receiver, the molten salt thermal storage, and the S-CO2 recompression Brayton cycle with reheating. Parametric analysis is conducted to investigate the effects of some key thermodynamic parameters (e.g. hot salt temperature, cycle high pressure, cycle low pressure, intermediate pressure, and the split ratio) on the integrated SPT system in terms of exergy efficiency. The parameter optimization is performed by using genetic algorithm in order to obtain the highest overall exergy efficiency. The effects of the component performance and the compressor inlet temperature on the optimum parameters are also discussed. The results indicate that the optimum hot salt temperature is 565 degrees C which is its maximum allowable temperature when the solar salt is used as the heat transfer fluid and the thermal storage media. Besides, the optimum cycle low pressure is in the range of 7.80-10.0 MPa which means that the cycle low pressure is not mandatory to be close to the critical pressure. The increase in the compressor inlet temperature leads to both the decrease in maximum exergy efficiency and the variation of the optimum thermodynamic parameters. The component performances have significant effects on the maximum exergy efficiency, but slight effects on optimum thermodynamic parameters. A novel salt with a higher maximum allowable temperature is indispensable for further improving the system efficiency. The maximum allowable temperature of 680 degrees C is recommended for novel salts to be used in the SPT system integrated with S-CO2 recompression Brayton cycle from the viewpoint of exergy efficiency under the present conditions. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在本研究中,提出了与S-CO2布雷顿循环集成的熔融盐太阳能发电塔(SPT)系统。为集成的SPT系统开发了集成模型,包括定日镜场,熔融盐太阳能接收器,熔融盐储热器以及带再加热的S-CO2压缩布雷顿循环。进行参数分析以研究一些关键的热力学参数(例如,热盐温度,循环高压,循环低压,中间压力和分流比)对综合SPT系统的能效效率影响。通过使用遗传算法执行参数优化,以获得最高的总火用效率。还讨论了部件性能和压缩机入口温度对最佳参数的影响。结果表明,最佳的热盐温度是565摄氏度,这是将太阳盐用作传热流体和储热介质时的最高允许温度。此外,最佳循环低压在7.80-10.0MPa的范围内,这意味着循环低压不必强制接近临界压力。压缩机入口温度的升高导致最大火用效率的降低和最佳热力学参数的变化。部件性能对最大火用效率有显着影响,但对最佳热力学参数影响很小。具有更高的最高允许温度的新型盐对于进一步提高系统效率是必不可少的。考虑到当前条件下的本能效率,建议在与S-CO2再压缩布雷顿循环结合的SPT系统中使用的新型盐推荐最高允许温度为680摄氏度。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号