...
首页> 外文期刊>Energy Conversion & Management >An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy
【24h】

An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy

机译:生物质能驱动的实验室规模鼓泡塔加湿除湿脱盐系统研究

获取原文
获取原文并翻译 | 示例
           

摘要

This article describes a biomass powered bubble column humidification-dehumidification desalination system. This system mainly consists of a biomass stove, air heat exchanger, bubble column humidifier and dehumidifier. Saw dust briquettes are used as biomass fuel in the stove. First level of experiments are carried out in bubble column humidifier with ambient air supply to select the best water depth, bubble pipe hole diameter and water temperature. Experiments are conducted by integrating the humidifier with the dehumidifier. Air is sent to the humidifier with and without pre-heating. Preheating of air is carried out in the air heat exchanger by using the flue gas and flame from the combustion chamber. It is observed that the humidifier ability is augmented with the rise in water depth, water temperature, mass flow rate of air and cooling water flow rate, and reduction in bubble pipe hole diameter. It is found from Taguchi analysis that the water temperature dominates in controlling the humidifier performance compared to other parameters. Better specific humidity is recorded with a bubble pipe hole diameter of 1 mm, water depth of 170 mm and water temperature of 60 degrees C. Highest distillate of 6.1 kg/h and 3.5 kg/h is collected for the HDH desalination system with preheated air and direct air supply respectively. Recovery of waste heat using an air heat exchanger reduces the fuel consumption from 0.36 kg to 0.2 kg for producing 1 kg of distilled water. Lowest distilled water cost of 0.0133 US $/kg through preheated air supply and 0.0231 US $/kg through direct air supply is observed. A correlation is developed to estimate the mass transfer coefficient and it agrees with the maximum deviation of 9% from experimental results. (C) 2017 Elsevier Ltd.
机译:本文介绍了一种由生物质驱动的鼓泡塔加湿-除湿脱盐系统。该系统主要由生物质炉,空气热交换器,鼓泡塔加湿器和除湿器组成。锯末煤饼用作炉灶中的生物质燃料。在带有环境空气供应的鼓泡塔加湿器中进行第一阶段的实验,以选择最佳水深,鼓泡孔直径和水温。通过将加湿器与除湿器集成在一起进行实验。空气在没有预热的情况下被送入加湿器。使用来自燃烧室的烟道气和火焰在空气热交换器中对空气进行预热。可以看出,随着水深,水温,空气质量流量和冷却水流量的增加以及气泡管孔直径的减小,加湿器的能力会增强。从Taguchi分析中发现,与其他参数相比,水温在控制加湿器性能方面占主导地位。气泡管孔径为1毫米,水深为170毫米,水温为60摄氏度时,记录的比湿更佳。采用预热空气的HDH脱盐系统收集的最高馏出物为6.1 kg / h和3.5 kg / h和直接供气。使用空气热交换器回收废热,将产生1千克蒸馏水的燃料消耗从0.36千克降低到0.2千克。通过预热空气供应的最低蒸馏水成本为0.0133美元/ kg,通过直接空气供应的最低蒸馏水成本为0.0231美元/ kg。建立了相关性以估计传质系数,并且该相关性与实验结果的最大偏差相符9%。 (C)2017爱思唯尔有限公司

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号