首页> 外文期刊>Energy Conversion & Management >Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials
【24h】

Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials

机译:复合相变材料对锂离子电池组综合热管理的实验与数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this article, a novel composite phase change materials based thermal management system coupled with air cooling was proposed in order to sustain the temperature rise and distribution within desirable ranges of the lithium-ion battery utilized in a hybrid power train. A combined experimental and numerical study was conducted to investigate the effects of air flow rate and phase change material liquid fraction on the thermal behavior of the integrated thermal management system. Comparisons between the integrated system and an air cooling system were implemented under different air flow rates and ambient temperatures. Furthermore, thermal characteristics of both systems during charge-discharge cycles were numerically simulated. The results showed that the cooling effect of the integrated system was obviously better than that of the air cooling system. The variation of the air flow rate and ambient temperature had negligible impact on the heat dissipation of the phase change cooling. After the fully melt of phase change material, the battery temperature did not rise rapidly due to the auxiliary cooling of the cooling air. During 4 C charge-discharge cycles) the temperature rise of the battery pack could be effectively restrained by the air cooling at a flow rate exceeding 300 m(3)/h. While for the integrated system, good thermal management could be achieved with only 100 m(3)/h of air flow rate. Especially for the operation mode, i.e., phase change material cooling during the discharge and coupled phase change material and air cooling during the charge, the integrated system could control the maximum temperature of the battery pack below 49.2 degrees C and reach up to six charge-discharge cycles under no additional battery power consumption.
机译:在本文中,提出了一种新颖的基于复合相变材料的热管理系统,并结合了空气冷却,以将温度上升和分布维持在混合动力系统中所用锂离子电池的理想范围内。进行了组合的实验和数值研究,以研究空气流速和相变材料液体分数对集成热管理系统的热性能的影响。在不同的空气流量和环境温度下,对集成系统和空气冷却系统进行了比较。此外,对两个系统在充放电循环中的热特性进行了数值模拟。结果表明,集成系统的冷却效果明显优于空冷系统。空气流速和环境温度的变化对相变冷却装置的散热影响可忽略不计。在相变材料完全熔化之后,由于冷却空气的辅助冷却,电池温度没有迅速升高。在4 C充放电循环中,可以通过空气冷却以超过300 m(3)/ h的流量有效地抑制电池组的温度升高。对于集成系统,仅以100 m(3)/ h的空气流速即可实现良好的热管理。特别是对于操作模式,即放电过程中的相变材料冷却和充电过程中的相变材料冷却以及空气冷却,集成系统可以将电池组的最高温度控制在49.2摄氏度以下,并最多可以进行六次充电-放电周期不增加电池功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号