首页> 外文期刊>Energy Conversion & Management >Convective heat transfer performance of CuO-water nanofluids in U-shaped minitube: Potential for improved energy recovery
【24h】

Convective heat transfer performance of CuO-water nanofluids in U-shaped minitube: Potential for improved energy recovery

机译:U型微型管中CuO-水纳米流体的对流传热性能:提高能量回收率的潜力

获取原文
获取原文并翻译 | 示例
           

摘要

Heat removal from a constant temperature heat source is relevant in energy recovery from thermal energy storage systems and catalytic reactors. Experiments were carried out to assess the heat transfer performance of CuO-water nanofluid flowing through a U-shaped minitube (0.9 mm inner diameter) for heat removal from a constant temperature source, with nanoparticle concentration (0.025-0.1 wt%) and volumetric flow rate (0.18-1.25 mL/s) as the independent variables. The thermal conductivity and viscosity of CuO-water nanofluids increased linearly with nanoparticle concentration, with thermal conductivity enhancement higher than that of viscosity increase. The heat transfer rate, heat transfer coefficient and Nusselt number of CuO-water nanofluids were higher than that of water. The improved heat transfer performance of CuO-water nanofluids may be attributed to their improved thermal conductivity and particle migration effects. Our experiments reveal that the heat transfer performance of CuO-water nanofluids in U-shaped minitube is enhanced to a larger extent at the lower flow rates and at an optimum nanoparticle concentration of 0.05 wt%. We believe that the existence of an optimum nanoparticle concentration may be attributed to the enhanced synergistic effect of higher thermal conductivity and particle migration. (C) 2016 Elsevier Ltd. All rights reserved.
机译:从恒温热源除热与从热能存储系统和催化反应器回收能量有关。进行实验以评估流经U形微型管(内径0.9毫米)以从恒温源中除热的CuO-水纳米流体的传热性能,其中纳米颗粒的浓度(0.025-0.1 wt%)和体积流量速率(0.18-1.25 mL / s)作为自变量。 CuO-水纳米流体的热导率和粘度随纳米颗粒浓度的增加而线性增加,其热导率的增加高于粘度的增加。 CuO-水纳米流体的传热速率,传热系数和努塞尔数均高于水。 CuO-水纳米流体的改进的传热性能可以归因于它们改进的导热率和颗粒迁移效果。我们的实验表明,U型微型管中的CuO-水纳米流体的传热性能在较低的流速和0.05 wt%的最佳纳米颗粒浓度下得到了较大程度的提高。我们认为最佳纳米颗粒浓度的存在可能归因于较高的导热性和颗粒迁移的增强的协同作用。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号