首页> 外文期刊>Energy Conversion & Management >Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis
【24h】

Optimization of a waste heat recovery system with thermoelectric generators by three-dimensional thermal resistance analysis

机译:三维热阻分析法优化热电发电机余热回收系统

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional (3D) thermal resistance analysis provides a rapid and simple method to estimate the power generated from a waste heat recovery system with thermoelectric generators (TEGs), and facilitates an optimization of the system. Such a system comprises three parts a waste heat recovery chamber, TEG modules and a cooling system. A fin-structured duct serves as a waste heat recovery chamber, which is attached to the hot sides of the TEGs; the cold sides of the TEGs are attached to a cooling system. The waste heat recovery chamber harvests energy from exhaust heat that the TEGs convert into electricity. The estimation of generated power is an important part of the system design. Methods of Computational Fluid Dynamics (CFD) assist the analysis and improve the performance with great accuracy but great computational duration. The use of this method saves much time relative to such CFD methods. In 3D thermal resistance analysis, a node of unknown temperature is located at the centroid of each cell into which the system is divided. The relations of unknown temperatures at the cells are based on the energy conservation and the definition of thermal resistance. The temperatures of inlet waste hot gas and ambient fluid are known. With these boundary conditions, the unknown temperatures in the system are solved, enabling estimation of the power generated with TEGs. A 3D model of the system was simulated with FloTHERM; its numerical solution matched the solution of the 3D thermal resistance analysis within 6%. The power generated with the same system with TEGs (TMH400302055, Wise Life Technology, Taiwan) was measured; the experimental result is consistent with the result obtained from the 3D thermal resistance analysis; the relative deviation is approximately 10%. The power generated is affected by many variables; the positions of the TEGs, the uniformity of the internal flow of the velocity profile and the internal and external flow velocities are considered in our 3D thermal resistance analysis. According to the results, both the positions of the TEGs and the uniformity of the internal flow of the velocity profile should be taken into account to maximize the power generation. Under varied operational conditions, the power generated from the system might be more sensitive to the velocity of either the internal or external flow. Choosing an appropriate method makes increasing the power generation efficient. The relations between variables and power generation are readily revealed, even with varied parameters, yielding an optimal design of a waste heat recovery system. (C) 2016 Elsevier Ltd. All rights reserved.
机译:三维(3D)热阻分析提供了一种快速,简单的方法来估算由具有热电发电机(TEG)的废热回收系统产生的功率,并有助于系统的优化。这样的系统包括三个部分:废热回收室,TEG模块和冷却系统。翅片结构的管道用作废热回收室,该室连接到TEG的热侧。 TEG的冷侧连接到冷却系统。废热回收室从废热中收集能量,这些废热由TEG转换成电能。估计产生的功率是系统设计的重要组成部分。计算流体动力学方法(CFD)有助于分析,并以较高的准确性和较长的计算时间来提高性能。与这种CFD方法相比,使用此方法可节省大量时间。在3D热阻分析中,未知温度的节点位于系统划分为每个单元的质心处。单元处未知温度的关系基于能量守恒和热阻的定义。入口废热气体和环境流体的温度是已知的。利用这些边界条件,可以解决系统中的未知温度,从而能够估算TEG产生的功率。用FloTHERM模拟了系统的3D模型;它的数值解与3D热阻分析的解匹配不到6%。测量了与TEG相同的系统(TMH400302055,Wise Life Technology,台湾)产生的功率;实验结果与3D热阻分析结果一致。相对偏差约为10%。产生的功率受许多变量影响。在我们的3D热阻分析中,考虑了TEG的位置,速度分布的内部流动的均匀性以及内部和外部流动的速度。根据结果​​,TEG的位置和速度分布图内部流的均匀性都应考虑在内,以最大程度地发电。在变化的运行条件下,系统产生的功率可能对内部或外部流的速度更为敏感。选择适当的方法可以提高发电效率。即使具有变化的参数,也很容易揭示变量与发电量之间的关系,从而可以优化废热回收系统的设计。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号