...
首页> 外文期刊>Energy Conversion & Management >Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis
【24h】

Product quality optimization in an integrated biorefinery: Conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis

机译:整合型生物精炼厂的产品质量优化:开心果果壳生物质通过热解转化为生物燃料和活性炭

获取原文
获取原文并翻译 | 示例
           

摘要

An economically viable transition to a renewable, sustainable energy future hinges on the ability to simultaneously produce multiple high value products from biomass precursors. Though there is considerable literature on the thermochemical conversion of biomass to biofuels and biochars, there are few holistic examinations that seek to understand trade-offs between biofuel quality and the associated pyrolysis conditions on activated carbons made from the resulting biochars. Using an Ordinary Least Squares regression analysis, this study probes the impact of pyrolysis and activation temperature on surface areas and pore volumes for 28 carbon dioxide-activated carbons. Activation temperature has the largest single impact of any other variable; increasing the temperature from 800 to 900 degrees C leads to an increase in surface area of more than 300 m(2)/g. Contrary to some prior results, pyrolysis temperature has minimal effect on the resulting surface area and pore volume, suggesting that optimizing the temperature at which biofuels are extracted will have little impact on carbon dioxide-activated carbons. Increasing pyrolysis temperature increases methane formation but decreases gaseous hydrocarbons. Bio-oil obtained at lower pyrolysis temperatures shows fewer oxygenated compounds, indicating a greater stability, but higher pyrolysis temperatures maximize production of key biorefinery intermediaries such as furans. By analyzing data in such a holistic manner, it may be possible to optimize the production of biofuels and activated carbons from biomass by minimizing the amount of raw materials and energy necessary to maximize fuel quality, surface areas and pore volumes, thereby increasing the economic incentives for thermochemical conversion of biomass. (C) 2016 Elsevier Ltd. All rights reserved.
机译:从经济上可行的过渡到可再生,可持续能源的未来取决于能否从生物质前体同时生产多种高价值产品。尽管有大量文献将生物质热化学转化为生物燃料和生物炭,但很少有整体研究试图了解生物燃料质量和相关生物炭制得的活性炭的热解条件之间的取舍。使用普通最小二乘回归分析,本研究探讨了热解和活化温度对28种二氧化碳活化碳的表面积和孔体积的影响。活化温度是所有其他变量中最大的单一影响。将温度从800摄氏度提高到900摄氏度会导致表面积增加超过300 m(2)/ g。与一些先前的结果相反,热解温度对所得表面积和孔体积的影响最小,这表明优化提取生物燃料的温度对二氧化碳活化的碳几乎没有影响。增加热解温度会增加甲烷的形成,但会减少气态碳氢化合物。在较低的热解温度下获得的生物油显示出较少的氧化化合物,表明具有更高的稳定性,但较高的热解温度可最大限度地提高关键生物精炼中间产物(例如呋喃)的产量。通过以这种整体方式分析数据,可以通过最大限度地减少使燃料质量,表面积和孔体积最大化所需的原材料和能源最少,来优化由生物质生产生物燃料和活性炭的方法,从而增加经济诱因用于生物质的热化学转化。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Energy Conversion & Management》 |2016年第11期|576-588|共13页
  • 作者单位

    Ondokuz Mayis Univ, Fac Engn, Dept Chem Engn, TR-55139 Kurupelit, Samsun, Turkey;

    Ondokuz Mayis Univ, Fac Engn, Dept Chem Engn, TR-55139 Kurupelit, Samsun, Turkey;

    Ondokuz Mayis Univ, Fac Engn, Dept Chem Engn, TR-55139 Kurupelit, Samsun, Turkey;

    Univ New Hampshire, Dept Chem Engn, 33 Acad Way, Durham, NH 03824 USA;

    Boston Univ, Dept Biomed Engn, 44 Cumminton Mall, Boston, MA 02215 USA;

    Boston Univ, Dept Mech Engn, 110 Cummington Mall, Boston, MA 02215 USA|Univ Fed Rio Grande do Norte, Dept Mech Engn, BR-59078970 Natal, RN, Brazil;

    Boston Univ, Div Mat Sci & Engn, 15 St Marys St, Brookline, MA 02446 USA;

    Univ Fed Rio Grande do Norte, Dept Mech Engn, BR-59078970 Natal, RN, Brazil|Boston Univ, Div Mat Sci & Engn, 15 St Marys St, Brookline, MA 02446 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pyrolysis; Bio-oil; Biorefinery; Activated carbon; Biochar; Optimization;

    机译:热解;生物油;生物炼制;活性炭;生物炭;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号