首页> 外文期刊>Energy Conversion & Management >Thermodynamic assessment of integrated biogas-based micro-power generation system
【24h】

Thermodynamic assessment of integrated biogas-based micro-power generation system

机译:集成沼气微发电系统的热力学评估

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a thermodynamic modelling of an integrated biogas (60%CH4 + 40%CO2) micro-power generation system for electricity generation is reported. This system involves a gas turbine cycle and organic Rankine cycle (ORC) where the wasted heat of gas turbine cycle is recovered by closed ORC. The net output power of the micro-power generation system is fixed at 1.4 MW includes 1 MW power generated by GT and 0.4 MW by ORC. Energy and exergy assessments and related parametric studies are carried out, and parameters that influence on energy and exergy efficiency are evaluated. The performance of the system with respect to variation of design parameters such as combustion air inlet temperature, turbine inlet temperature, compressor pressure ratio, gas turbine isentropic efficiency and compressor isentropic efficiency (from the top cycle) and steam turbine inlet pressure, and condenser pressure (from bottoming cycle) is evaluated. The results reveal that by the increase of gas turbine isentropic efficiency, the outlet temperature of gas turbine decreases which incurs negative impacts on the performance of air preheater and heat exchanger, however the energy and exergy efficiency increases in the whole system. By the increase of air compressor pressure ratio, the energy and exergy of the combined cycle decreases. The exergy efficiency of ORC alters by the variation of gas turbine parameters which can be attributed to the variation of temperature discrepancy between gas turbine exhaust temperature and ORC working fluid. Both first and second law efficiency of the combined cycle increases with the enhancement of inlet pressure of ORC turbine due to the mitigation of exergy destruction in heat exchanger. The rate of power generation in ORC increases by the enhancement of ORC turbine inlet pressure, however overall exergy destruction of the cycle decreases slightly. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文报道了用于发电的集成沼气(60%CH4 + 40%CO2)微发电系统的热力学模型。该系统涉及燃气轮机循环和有机朗肯循环(ORC),其中燃气轮机循环的浪费热量通过封闭的ORC回收。微发电系统的净输出功率固定为1.4 MW,其中包括GT产生的1 MW和ORC产生的0.4 MW。进行了能量和火用评估以及相关的参数研究,并评估了影响能量和火用效率的参数。系统在设计参数变化方面的性能,例如燃烧空气入口温度,涡轮入口温度,压缩机压力比,燃气轮机等熵效率和压缩机等熵效率(从顶部循环开始)以及蒸汽轮机入口压力和冷凝器压力(从触底周期开始)进行评估。结果表明,随着燃气轮机等熵效率的提高,燃气轮机的出口温度降低,对空气预热器和换热器的性能产生负面影响,但整个系统的能量和火用效率增加。随着空气压缩机压力比的增加,联合循环的能量和火用降低。 ORC的火用效率因燃气轮机参数的变化而改变,这可以归因于燃气轮机排气温度与ORC工作流体之间的温度差异的变化。联合循环的第一定律和第二定律效率都随着ORC涡轮机入口压力的增加而增加,这归因于热交换器中火用破坏的减轻。 ORC涡轮机入口压力的增加会提高ORC的发电速度,但整个循环的火用破坏会略有降低。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号