首页> 外文期刊>Energy Conversion & Management >Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines
【24h】

Evaluation of thermal efficiency and energy conversion of thermoacoustic Stirling engines

机译:热声斯特林发动机的热效率和能量转换评估

获取原文
获取原文并翻译 | 示例
       

摘要

Thermodynamic cycle transferring heat and work was executed in thermoacoustic engines, when the acoustic resonators substituted the moving mechanical components of the traditional heat engines. Based on the travel ing-wave phasing and reversible heat transfer, thermoacoustic Stirling engines could achieve 70% of the Carnot efficiency theoretically, if the inevitable viscous dissipation in resonators was also counted as exported power. It should be pointed out an error on this efficiency evaluation in the previous literatures. More than 70% of the acoustic power production was often consumed by the side-branch resonator that was the essential configuration to build up a thermoacoustic Stirling engine. According to the simulation results and some experimental data, the actual available acoustic power consumed by the acoustic loads was restricted by the operating peak-to-mean pressure ratio, i.e. |p_1/p_m|. When the peak-to-mean pressure ratio operated on 4-6.5%, the thermal efficiency and power density of the available acoustic power reached higher levels. But the available acoustic power would approach zero when |p_1/p_m| attained 10%. It was approved that the turbulence oscillation occurred on the higher |p+1/p_m| (usually >4%) was the main reason of the excess dissipation in the side-branch resonator. This character of the available power limited the wide application of thermoacoustic Stirling engines. The evaluation of thermal efficiency and energy conversion also indicated the improving direction of thermoacoustic Stirling engines. Generators driven by the thermoacoustic Stirling engines were an effective way, due to the elimination of the side-branch resonator. To achieve a high power density and a high pressure ratio on the higher available power efficiency level, the standing-wave thermoacoustic engines might outvie the traveling-wave thermoacoustic engines. To enjoy the best features of standing-wave engines and traveling-wave engines simultaneously, exploiting multi-stage thermoacoustic engines, such as cascade engines, etc., would be an important research direction.
机译:当声谐振器代替了传统热机的运动机械部件时,在热声发动机中执行传递热量和功的热力学循环。基于行波定相和可逆传热,如果将谐振器中不可避免的粘性耗散也算作输出功率,则热声斯特林发动机理论上可以达到卡诺效率的70%。在以前的文献中应该指出这种效率评估的错误。超过70%的声功率产生通常由侧分支谐振器消耗,这是构建热声斯特林发动机的基本配置。根据仿真结果和一些实验数据,声负载消耗的实际可用声功率受到工作峰均压力比,即| p_1 / p_m |的限制。当峰均压力比为4-6.5%时,可用声功率的热效率和功率密度达到更高的水平。但是| p_1 / p_m |时,可用声功率将接近零。达到10%。公认湍流振荡发生在较高的| p + 1 / p_m |上。 (通常> 4%)是侧分支谐振器中过度耗散的主要原因。可用功率的这一特征限制了热声斯特林发动机的广泛应用。对热效率和能量转换的评估也表明了热声斯特林发动机的发展方向。由于消除了侧分支谐振器,由热声斯特林发动机驱动的发电机是一种有效的方法。为了在更高的可用功率效率级别上实现高功率密度和高压力比,驻波热声发动机可能会超越行波热声发动机。为了同时享受驻波引擎和行波引擎的最佳功能,开发多级热声引擎,例如级联引擎等,将是重要的研究方向。

著录项

  • 来源
    《Energy Conversion & Management》 |2010年第4期|P.802-812|共11页
  • 作者单位

    Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190, PR China;

    rnKey Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190, PR China;

    rnKey Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190, PR China;

    rnKey Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    thermoacoustic stirling engine; traveling-wave; high impedance; turbulence; peak-to-mean pressure ratio;

    机译:热声斯特林发动机;行波高阻抗湍流峰均压比;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号