...
首页> 外文期刊>Energy Conversion & Management >Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production
【24h】

Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production

机译:氨-水朗肯循环用于发电和供热的热力学性能评估

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, an ammonia-water based Rankine cycle is thermodynamically analyzed for renewable-based power production, e.g. solar, geothermal, biomass, oceanic-thermal, and nuclear as well as industrial waste heat. Due to the nature of the ammonia-water mixture, changes in its concentration allow thermodynamic cycles to adapt to fluctuations in renewable energy sources, which is an important advantage with respect to other working fluids. The non-linearity of the working fluid's behaviour imposes that each cycle must be optimized based upon several parameters. A model has been developed to optimize the thermodynamic cycle for maximum power output and carry out a parametric study. The lowest temperature state of the system is fixed, and three other parameters are variables of study, namely, maximum system temperature, ammonia concentration and energy ratio, which is a newly introduced parameter. Energy ratio indicates the relative position of the expansion state and is defined in terms of enthalpies. The study is conducted over a concentration range of 0-0.5, the maximum temperature studied varies between 75 ℃ and 350 ℃ for extreme cases, and the energy ratio from saturated liquid to superheated vapour. As a result, the optimal expansion energy ratio is predicted. The cycle efficiencies are drastically affected by the concentrations and temperatures. Depending on the source temperature, the cycle energy efficiency varies between 5% and 35% representing up to 65% of the Carnot limit. The optimal energy ratio has been determined for several concentrations and reported graphically.
机译:在本文中,对基于氨水的兰金循环进行了热力学分析,以用于基于可再生能源的发电,例如太阳能,地热,生物质能,海洋热能,核能以及工业废热。由于氨水混合物的性质,其浓度的变化允许热力学循环适应可再生能源的波动,这相对于其他工作流体而言是重要的优势。工作流体行为的非线性意味着必须基于几个参数来优化每个循环。已经开发出一种模型,以优化热力学循环以获得最大功率输出并进行参数研究。系统的最低温度状态是固定的,另外三个参数是研究变量,即系统最高温度,氨气浓度和能量比,这是一个新引入的参数。能量比表示膨胀状态的相对位置,并根据焓定义。该研究在0-0.5的浓度范围内进行,在极端情况下,研究的最高温度在75℃至350℃之间变化,并且从饱和液体到过热蒸汽的能量比。结果,预测了最佳的膨胀能量比。浓度和温度极大地影响了循环效率。取决于能源温度,循环能效在5%至35%之间变化,最高可达到卡诺极限的65%。已确定几种浓度的最佳能量比,并以图形方式报告。

著录项

  • 来源
    《Energy Conversion & Management》 |2010年第12期|P.2501-2509|共9页
  • 作者单位

    Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4;

    rnFaculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4;

    rnFaculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    heat engine; rankine cycle; energy; efficiency; solar power; sustainable development;

    机译:热机朗肯循环能源;效率;太阳能;可持续发展;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号