首页> 外文期刊>Energy Conversion & Management >Recommendations for a restart of molten salt reactor development
【24h】

Recommendations for a restart of molten salt reactor development

机译:重新启动熔盐反应堆开发的建议

获取原文
获取原文并翻译 | 示例
           

摘要

The concept of the molten salt reactor (MSR) refuses to go away. The Generation-IV process lists the MSR as one of the six concepts to be considered for extending fuel resources. Good fuel utilization and good economics are required to meet the often-cited goal of 10 TWe globally and 1 TWe for the US by non-carbon energy sources in this century by nuclear fission. Strong incentives for the molten salt reactor design are its good fuel utilization, good economics, amazing fuel flexibility and promised large benefits. It can: 1. use thorium or uranium; 2. be designed with lots of graphite to have a fairly thermal neutron spectrum or without graphite moderator to have an epithermal neutron spectrum; 3. fission uranium isotopes and plutonium isotopes; 4. produces less long-lived wastes than today's reactors by a factor of 10-100; 5. operate with non-weapon grade fissile fuel, or in suitable sites it can operate with enrichment between reactor-grade and weapon grade fissile fuel; 6. be a breeder or near breeder; 7. operate at temperature > 1100 ℃ if carbon composites are successfully developed. Enhancing ~(232)U content in the uranium to over 500 ppm makes the fuel undesirable for weapons, but it should not detract from its economic use in liquid fuel reactors: a big advantage in nonproliferation. Economics of the MSR are enhanced by operating at low pressure and high temperature and may even lead to the preferred route to hydrogen production. The cost of the electricity produced from low enriched fuel averaged over the life of the entire process, has been predicted to be about 10% lower than that from LWRs, and 20% lower for high-enriched fuel, with uncertainties of about 10%. The development cost has been estimated at about 1 BS (e.g., a 100 M$/year base program for 10 years) not including construction of a series of reactors leading up to the deployment of multiple commercial units at an assumed cost of 9 B$ (450 M$/year over 20 years). A benefit of liquid fuel is that smaller power reactors can faithfully test features of larger reactors, thereby reducing the number of steps to commercial deployment. Assuming electricity is worth $ 50 per MWe h, then 50 years of 10 TWe power level would be worth 200 trillion dollars. If the MSR could be developed and proven for 10 BS and would save 10% over its alternative, the total savings over 50 years would be 20 trillion dollars: a good return on investment even considering discounted future savings. The incentives for the molten salt reactor are so strong and its relevance to our energy policy and national security are so compelling that one asks, "Why has the reactor not already been developed?"
机译:熔融盐反应堆(MSR)的概念拒绝消失。第四代流程将MSR列为可用于扩展燃料资源的六个概念之一。需要良好的燃料利用率和良好的经济性,才能达到本世纪通过核裂变利用非碳能源在全球达到10 TWe,在美国达到1 TWe的目标。熔融盐反应堆设计的强大动力是其良好的燃料利用率,良好的经济性,惊人的燃料灵活性以及所带来的巨大收益。它可以:1.使用or或铀; 2.设计有很多石墨以具有相当的热中子光谱,或没有石墨减速剂以具有超热中子光谱; 3.裂变铀同位素和p同位素; 4.产生的长寿命废物比当今的反应堆少10到100倍; 5.使用非武器级易裂变燃料运行,或在合适的场所以反应堆级和武器级易裂变燃料之间的浓缩运行; 6.成为种鸽或近亲种; 7.如果成功开发出碳复合材料,则可在> 1100℃的温度下运行。将铀中的〜(232)U含量提高到500 ppm以上,这种燃料不适合用于武器,但不应减损其在液体燃料反应堆中的经济用途:这是防扩散方面的一大优势。通过在低压和高温下运行,可以提高MSR的经济性,甚至可以成为生产氢气的首选途径。据预测,在整个过程的整个生命周期内,平均而言,低浓燃料产生的电力成本将比轻水堆低约10%,高浓燃料的发电成本将降低20%,不确定性约为10%。开发成本估计约为1个BS(例如,一个10亿美元/年的基本​​计划,为期10年),其中不包括建造一系列反应堆,导致部署多个商用机组,假定成本为9 B $。 (20年内每年4.5亿美元)。液体燃料的好处是,较小功率的反应堆可以如实地测试较大反应堆的特征,从而减少了商业部署的步骤。假设电价为每MWe h 50美元,那么10 TWe功率水平的50年将价值200万亿美元。如果能够为10 BS开发并验证MSR,并且比其替代方案节省10%,则50年的总节省将达到20万亿美元:即使考虑折现的未来节省,投资回报率也很高。熔融盐反应堆的动力如此之大,它与我们的能源政策和国家安全的关系是如此令人信服,以至于有人问:“为什么还没有开发反应堆?”

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号