...
首页> 外文期刊>Energy & environmental science >In situ polymerization process: an essential design tool for lithium polymer batteries
【24h】

In situ polymerization process: an essential design tool for lithium polymer batteries

机译:在原位聚合过程中:锂聚合物电池的必备设计工具

获取原文
           

摘要

Polymer electrolytes (PEs), a type of solid-state electrolytes (SSEs), have been in contention for nearly half a century to replace organic liquid electrolytes (LEs) that are used in state-of-the-art lithium-ion batteries (LIBs). They are envisaged to accelerate the industrial-scale production of safe, energy-dense, flexible, and thin lithium polymer batteries (LPBs). LPBs are expected to be widely employed for electric propulsion and other futuristic applications, such as flexible electronics and the Internet of Things (IoT). Even though several polymer architectures and chemistries have been attempted so far, PEs that can outperform LEs remain a real challenge. Apart from inadequate Li+-ion transport properties, challenges concerning the integration of PEs and the engineering of compatible, robust, and durable interfaces and interphases at both the electrodes of LPBs must be appropriately addressed. Recently, the in situ polymerization process has been widely employed as a robust fabrication tool for surpassing the intricacies related to the integration of PEs in LPBs. Hence, in this review, we focus on the in situ polymerization processes that employ various polymerization methods (e.g., free-radical polymerization, ionic polymerization, electropolymerization, condensation polymerization, etc.), functional monomers and oligomers (e.g., acrylate, methacrylate, allyl and vinyl ethers, epoxides, etc.), and PE integration strategies for the fabrication of lithium (ion and metal) polymer batteries (LIPBs and LMPBs). Additionally, this review also evaluates the approaches that have been developed until now to implement the in situ processing of LPBs from large-sized pouch cells to flexible-/printable-batteries and even microbatteries.
机译:聚合物电解质(PES),一种固态电解质(SSES),已在近半个世纪中争夺近半个世纪以取代用于最先进的锂离子电池的有机液体电解质(LES)( libs)。设想它们以加速安全,能量密度,柔性和薄锂聚合物电池(LPBS)的工业规模生产。预计LPBS将广泛用于电动推进和其他未来派应用,例如灵活的电子产品和物联网(物联网)。尽管到目前为止已经尝试了几种聚合物架构和化学品,但可以胜过LES的PES仍然是一个真正的挑战。除了Li +Ion运输房产不足之外,必须适当地解决PES和LPB的电极的兼容,鲁棒和耐用接口和互相界面的互相界面的挑战,必须得到适当地解决。近来,原位聚合过程已广泛采用鲁棒制造工具,用于超越与LPBS中PE的集成有关的复杂性。因此,在该评价中,我们专注于采用各种聚合方法(例如,自由基聚合,离子聚合,电结合,缩聚,缩聚等)的原位聚合方法,官能单体和低聚物(例如,丙烯酸酯,甲基丙烯酸酯,烯丙基和乙烯基醚,环氧化物等),以及用于制造锂(离子和金属)聚合物电池(Lipbs和LMPBs)的PE积分策略。此外,该审查还评估了直到现在的方法,以实现从大型袋细胞的LPBS的原位处理到柔性/可打印电池甚至微滴乳。

著录项

  • 来源
    《Energy & environmental science》 |2021年第5期|2708-2788|共81页
  • 作者单位

    Forschungszentrum Julich GmbH Helmholtz Inst Munster IEK 12 Corrensstr 46 D-48149 Munster Germany|Acad Sci & Innovat Res AcSIR Sect 19 Ghaziabad 201002 Uttar Pradesh India|CSIR Natl Chem Lab Phys & Mat Chem Div Pune 411008 Maharashtra India;

    Forschungszentrum Julich GmbH Helmholtz Inst Munster IEK 12 Corrensstr 46 D-48149 Munster Germany|Dutch Natl Inst Appl Sci Res TNO Holst Ctr High Tech Campus 31 NL-5656 AE Eindhoven Netherlands;

    CSIR Natl Chem Lab Phys & Mat Chem Div Pune 411008 Maharashtra India;

    Forschungszentrum Julich GmbH Helmholtz Inst Munster IEK 12 Corrensstr 46 D-48149 Munster Germany|MEET Battery Res Ctr Corrensstr 46 D-48149 Munster Germany|Univ Munster Inst Phys Chem Corrensstr 28-30 D-48149 Munster Germany;

    Forschungszentrum Julich GmbH Helmholtz Inst Munster IEK 12 Corrensstr 46 D-48149 Munster Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号