...
首页> 外文期刊>Energy & environmental science >Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent
【24h】

Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent

机译:通过可扩展的快速循环水收割机,具有垂直对齐的纳米复合材料吸附剂,通过可扩展的快速循环水收割机实现了超高的太阳能驱动的大气水资源

获取原文
获取原文并翻译 | 示例
           

摘要

Freshwater scarcity is a globally significant challenge threatening the development of human society. Sorption-based atmospheric water harvesting offers an appealing way to solve this challenge by extracting clean water from the air. However, the weak ability of sorbents to capture water from dry air and the low water productivity of devices are two long-standing bottlenecks for realizing efficient atmospheric water harvesting. Here, we report a vertically aligned nanocomposite sorbent, LiCl@rGO-SA, by confining lithium chloride (LiCl) in a reduced graphene oxide (rGO) and sodium alginate (SA) matrix. The sorbent shows high water uptake, as high as thrice its weight, by integrating the chemisorption of LiCl, deliquescence of monohydrate LiCl center dot H2O, and absorption of LiCl aqueous solution. Moreover, LiCl@rGO-SA exhibits fast sorption-desorption kinetics enabled by the vertically aligned and hierarchical pores of the rGO-SA matrix as water vapor transfer channels. We further engineered a scalable solar-driven rapid-cycling continuous atmospheric water harvester with synergetic heat and mass transfer enhancement. The water harvester using LiCl@rGO-SA realized eight continuous water capture-collection cycles per day and ultrahigh water productivity up to 2120 mL(water) kg(sorbent)(-1) day(-1) from dry air without any other energy consumption. Our demonstration of the high-performance nanocomposite sorbent and scalable atmospheric water harvester offers a low-cost and promising strategy for efficiently extracting water from the air.
机译:淡水稀缺是一个全球性的重要挑战,威胁着人类社会的发展。基于吸附的大气水收获提供了一种吸引人的方法,可以通过从空气中提取清洁水来解决这一挑战。然而,吸附剂从干燥空气中捕获水的弱能力和装置的低水生产率是两个用于实现有效大气采集的长期瓶颈。这里,我们通过将氯化锂(LiCl)在还原的石墨烯(RGO)和藻酸钠(SA)基质中,通过将氯化锂(LiCl)和藻酸钠(SA)基质中的氯化锂(LiCl)报告垂直对齐的纳米复合材料吸附剂,LiCl @ Rgo-Sa。吸附剂通过将LiCl的化学聚合,单水合物LiCl中心点H2O的潮解和LiCl水溶液的吸收,通过整合LiCl的化学吸附,对其重量高尽可能高的水吸收。此外,LiCl @ Rgo-SA表现出通过Rgo-SA基质的垂直对准和分层孔的快速吸附解吸动力学作为水蒸气传输通道。我们进一步设计了一种可扩展的太阳能驱动的快速循环连续大气水收割机,具有协同热量和传质增强。使用Licl @ rgo-sa的水收割机每天实现八个连续水捕获收集循环,超高水生产率高达2120毫升(水)kg(吸附剂)( - 1)日( - 1),没有任何其他能量的干燥空气消费。我们的高性能纳米复合材料吸附剂和可伸缩大气水收割机的证明提供了低成本和有希望的策略,可有效地从空气中提取水。

著录项

  • 来源
    《Energy & environmental science》 |2021年第11期|5979-5994|共16页
  • 作者单位

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Inst Refrigerat & Cryogen Res Ctr Solar Power & Refrigerat Shanghai 200240 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号