...
首页> 外文期刊>Energy & environmental science >Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors
【24h】

Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors

机译:基于独立透明金属网的超薄,可折叠和可设计超级电容器

获取原文
获取原文并翻译 | 示例
           

摘要

Fully integrated ultrathin, transparent and foldable energy storage devices are essential for the development of smart wearable electronics, yet typical supercapacitor electrodes are substrate-supported which limits their thickness, transparency and mechanical properties. Employing freestanding transparent electrodes with no substrate support could bring ultrathin, foldable and designable supercapacitors closer to reality. Herein, we report a freestanding, ultrathin (<5 mu m), highly conductive (3 x 10(4) S cm(-1)), highly transparent (>84% transmittance) and foldable metallic network electrode, loaded with MnO2 by electrochemical deposition, as a supercapacitor electrode. The freestanding metallic network electrode is fabricated via a simple and low-cost laser direct-writing micro-patterning technique followed by a selective electrodeposition process, where the metallic network patterns, network periods, metal thickness and also the electrode film patterns can be designed for different applications. The obtained freestanding MnO2@Ni network electrode delivers an outstanding areal capacitance of 80.7 mF cm(-2) and long-term performance stability (96.3% after 10000 cycles). Moreover, the symmetric solid-state supercapacitors employing the freestanding MnO2@Ni network electrode not only show high areal capacitance as well as high optical transparency (480% transmittance), but also can be tailored, attached, folded, rolled up, and crumpled into any object or various shapes with only slight performance degradation. The advent of such freestanding transparent metallic network electrodes may open up a new avenue for realizing fully integrated ultrathin, foldable and designable supercapacitors towards self-powered wearable electronics.
机译:完全集成的超薄,透明和可折叠储能设备对于智能穿戴电子设备的开发至关重要,但是典型的超级电容器电极是由衬底支撑的,这限制了它们的厚度,透明度和机械性能。使用没有基板支撑的独立透明电极可以使超薄,可折叠和可设计的超级电容器更接近现实。在此,我们报道了一种独立的超薄(<5微米),高导电性(3 x 10(4)S cm(-1)),高透明性(> 84%透射率)和可折叠的金属网络电极,其负载有MnO2。电化学沉积,作为超级电容器电极。独立的金属网络电极是通过简单且低成本的激光直接写入微图案技术制造的,然后进行选择性电沉积工艺,其中可以设计金属网络图案,网络周期,金属厚度以及电极膜图案,以用于不同的应用程序。获得的独立式MnO2 @ Ni网络电极可提供80.7 mF cm(-2)的出色面积电容和长期性能稳定性(10000次循环后为96.3%)。此外,采用独立式MnO2 @ Ni网络电极的对称固态超级电容器不仅显示出高的面电容以及高的光学透明性(480%的透射率),而且可以定制,附着,折叠,卷起和压皱成任何物体或各种形状,性能仅会略有下降。这种独立的透明金属网络电极的出现可能为实现完全集成的超薄,可折叠和可设计的超级电容器,为自供电可穿戴电子设备开辟一条新途径。

著录项

  • 来源
    《Energy & environmental science》 |2017年第12期|2534-2543|共10页
  • 作者单位

    Soochow Univ, Coll Phys Optoelect & Energy, Key Lab Adv Opt Mfg Technol Jiangsu Prov, Suzhou 215006, Jiangsu, Peoples R China|Soochow Univ, Key Lab Modern Opt Technol, Educ Minist China, Suzhou 215006, Jiangsu, Peoples R China;

    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China;

    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China;

    Tsinghua Univ, Inst Microelect, TNList, Beijing 100084, Peoples R China;

    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China;

    Soochow Univ, Coll Phys Optoelect & Energy, Key Lab Adv Opt Mfg Technol Jiangsu Prov, Suzhou 215006, Jiangsu, Peoples R China|Soochow Univ, Key Lab Modern Opt Technol, Educ Minist China, Suzhou 215006, Jiangsu, Peoples R China;

    Soochow Univ, Coll Phys Optoelect & Energy, Key Lab Adv Opt Mfg Technol Jiangsu Prov, Suzhou 215006, Jiangsu, Peoples R China|Soochow Univ, Key Lab Modern Opt Technol, Educ Minist China, Suzhou 215006, Jiangsu, Peoples R China;

    Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号