...
首页> 外文期刊>Energy & environmental science >Enhancing SOFC cathode performance by surface modification through infiltration
【24h】

Enhancing SOFC cathode performance by surface modification through infiltration

机译:通过渗透进行表面改性以提高SOFC阴极性能

获取原文
获取原文并翻译 | 示例
           

摘要

Solid oxide fuel cells (SOFCs) have the potential to be one of the cleanest and most efficient energy technologies for direct conversion of chemical fuels to electricity. Economically competitive SOFC systems appear poised for commercialization, but widespread market penetration will require continuous innovation of materials and fabrication processes to enhance system lifetime and reduce cost. One early technical opportunity is minimization of resistance to the oxygen reduction reaction (ORR) at the cathode, which contributes the most to performance degradation and efficiency loss in the existing SOFCs, especially at temperatures <700 ℃. Detailed study over the past 15 years has revealed the positive impact of catalyst infiltration on SOFC cathode performance, both in power density and durability metrics. However, realizable performance improvements rely upon strongly-coupled relationships in materials and morphology between the infiltrate and the backbone, and therefore efficacious systems cannot be simply generated with a set of simple heuristics. This article reviews recent progress in enhancing SOFC cathode performance by surface modification through a solution-based infiltration process, focusing on two backbone architectures - inherently functional and skeletal -infiltrated using wet-chemistry processes. An efficient cathode consists of a porous mixed-conducting backbone and an active coating catalyst; the porous backbone provides excellent ionic and electronic conductivity, while the infiltrated surface coating possesses high catalytic activity and stability. As available, performance comparisons are emphasized and reaction schematics for specific infiltrate/ backbone systems are summarized. While significant progress has been achieved in enhancing surface catalytic activity and durability, the detailed mechanisms of performance enhancement are insufficiently understood to obtain critical insights and a scientific basis for rational design of more efficient catalysts and novel electrode architectures. Recent progress in characterization of surfaces and interfaces is briefly discussed with challenges and perspectives in surface modification of SOFC electrodes. Surface modification through infiltration is expected to play an increasingly important role in current and next-generation commercial SOFC development, and this review illustrates the sophisticated technical considerations required to inform judicious selection of an infiltrate for a given SOFC system.
机译:固体氧化物燃料电池(SOFC)可能是将化学燃料直接转化为电能的最清洁,最高效的能源技术之一。具有经济竞争力的SOFC系统似乎已准备好商业化,但是广泛的市场渗透将需要不断创新材料和制造工艺以延长系统寿命并降低成本。一个早期的技术机遇是使阴极处的氧还原反应(ORR)的电阻最小化,这对现有SOFC的性能下降和效率损失贡献最大,尤其是在<700℃的温度下。过去15年的详细研究表明,催化剂渗透对SOFC阴极性能的积极影响,包括功率密度和耐久性指标。但是,可实现的性能改进依赖于渗透物和主干之间的材料和形态之间的强耦合关系,因此无法通过一组简单的启发式方法简单地生成有效的系统。本文回顾了通过基于溶液的渗透工艺进行表面改性来提高SOFC阴极性能的最新进展,重点关注了使用湿化学工艺渗透的两种主链结构-固有功能和骨架渗透。有效的阴极由多孔的混合导电主链和活性涂层催化剂组成。多孔主链具有出色的离子和电子传导性,而渗透的表面涂层则具有很高的催化活性和稳定性。在可用的情况下,强调性能比较并总结特定渗透/骨架系统的反应示意图。尽管在增强表面催化活性和耐久性方面已取得重大进展,但对性能增强的详细机制仍知之甚少,无法获得批判性的见解和合理设计更高效催化剂和新型电极结构的科学依据。简要讨论了表面和界面表征的最新进展,并提出了SOFC电极表面改性的挑战和观点。预计通过渗透进行表面改性将在当前和下一代商业SOFC开发中发挥越来越重要的作用,并且该综述说明了为明智地选择给定SOFC系统的渗透物所需的复杂技术考虑。

著录项

  • 来源
    《Energy & environmental science》 |2014年第2期|552-575|共24页
  • 作者单位

    School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA 30332, USA;

    School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA 30332, USA;

    School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA 30332, USA;

    National Energy Technology Laboratory, Office of Fossil Energy, U.S. Department of Energy, Morgantovm, WV 26506, USA;

    School of Materials Science and Engineering, Center for Innovative Fuel Cell and Battery Technologies, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA 30332, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号