...
首页> 外文期刊>Energy & environmental science >Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high- voltage cycling behavior for lithium ion battery application
【24h】

Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high- voltage cycling behavior for lithium ion battery application

机译:具有优异的高压循环性能的固态电解质涂层阴极材料的原子层沉积,适用于锂离子电池应用

获取原文
获取原文并翻译 | 示例
           

摘要

LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 (NMC) is a highly promising cathode material for use in lithium ion batteries; unfortunately, its poor cycling performance at high cutoff voltages hinders its commercialization. In this study, for the first time, we employ atomic layer deposition (ALD) to coat lithium tantalum oxide, a solid-state electrolyte, with varying thicknesses on NMC in an attempt to improve battery performance. Our results indicate that utilization of a solid-state electrolyte as a coating material for NMC significantly improves performance at high cutoff voltages but is strongly dependent on coating thicknesses. Our investigation revealed that a thicker coating proved to be beneficial in preventing cathode material dissolution into the electrolyte and aided in maintaining the microstructure of NMC. Consequently, a thicker ALD coating resulted in increased electrochemical impedance of the cathode. The results of this study indicate that an optimized coating thickness is needed in order to strike a balance between maintaining structural stability while minimizing electrochemical impedance. The coating thicknesses are functionally specific, and for the best improvement of a cathode, a particular coating thickness should be sought.
机译:LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2(NMC)是一种很有前途的正极材料,可用于锂离子电池。不幸的是,其在高截止电压下较差的循环性能阻碍了其商业化。在这项研究中,我们首次使用原子层沉积(ALD)涂覆固态电容器上的钽酸锂锂,在NMC上具有不同的厚度,以尝试改善电池性能。我们的结果表明,将固态电解质用作NMC的涂层材料可显着提高高截止电压下的性能,但在很大程度上取决于涂层的厚度。我们的研究表明,较厚的涂层有助于防止阴极材料溶解到电解质中,并有助于保持NMC的微观结构。因此,较厚的ALD涂层导致阴极的电化学阻抗增加。这项研究的结果表明,需要最佳的涂层厚度,以便在保持结构稳定性和最小化电化学阻抗之间取得平衡。涂层的厚度在功能上是特定的,并且为了最佳地改善阴极,应寻求特定的涂层厚度。

著录项

  • 来源
    《Energy & environmental science》 |2014年第2期|768-778|共11页
  • 作者单位

    Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada;

    Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada;

    Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada;

    Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada;

    Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada;

    General Motors R&D Center, Warren, MI 48090-9055, USA;

    Nanomaterials and Energy Lab, Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号