...
首页> 外文期刊>Energy & environmental science >Interface engineering in nanocarbon-Ta_2O_5 hybrid photocatalysts
【24h】

Interface engineering in nanocarbon-Ta_2O_5 hybrid photocatalysts

机译:纳米碳-Ta_2O_5杂化光催化剂的界面工程

获取原文
获取原文并翻译 | 示例
           

摘要

Hybridizing inorganic nanomaterials with carbon nanotubes and graphene constitutes a powerful approach towards creating new functional materials for environmental and sustainable energy applications. Their superior performance originates from synergistic effects based on charge and energy transfer processes at the hybrid's interfaces. However, only few studies have been devoted so far towards rationally designing these hybrids. In this work we demonstrate that engineering interfaces as well as the morphology of the functional inorganic compound can maximise the synergistic effects in hybrids, thus further enhancing the hybrid's photocatalytic properties. Particularly, we have stimulated the growth of ultra-thin single-crystalline layers of tantalum (v) oxide (Ta_2O_5) with preferred orientation at substantially reduced crystallisation temperatures, by utilising the graphitic CNT surfaces as seed crystals through heterogeneous nucleation. The resulting hybrids possess outstanding activities for the evolution of hydrogen via sacrificial water splitting that are about 35 times higher than those of comparable materials such as tantalates. The additional improvements in this hybrid are attributed to the single-crystalline nature of the coating, which alleviates transport of electrons to the interface, as well as the formation of a Schottky-type junction between the metallic nanocarbon and the semiconducting metal oxide, which facilitates charge transfer and thus charge separation at the interface.
机译:无机纳米材料与碳纳米管和石墨烯的混合构成了一种强有力的方法,可为环境和可持续能源应用创造新型功能材料。它们的卓越性能源自混合动力接口处基于电荷和能量转移过程的协同效应。但是,到目前为止,只有很少的研究致力于合理设计这些混合动力车。在这项工作中,我们证明了工程界面以及功能性无机化合物的形态可以最大化杂化体的协同效应,从而进一步增强了杂化体的光催化性能。特别是,通过利用石墨CNT表面作为异种成核的晶种,我们在实质上降低的结晶温度下刺激了具有优选取向的钽(v)氧化物超薄单晶层(Ta_2O_5)的生长。所得的杂种具有通过牺牲水分解产生氢的杰出活性,其活性是可比物质如钽酸盐的约35倍。这种杂化材料的其他改进归因于涂层的单晶性质,可减轻电子向界面的传输,并在金属纳米碳和半导体金属氧化物之间形成肖特基型结,从而促进电荷转移,从而在界面处发生电荷分离。

著录项

  • 来源
    《Energy & environmental science》 |2014年第2期|791-796|共6页
  • 作者单位

    Institute of Physical Chemistry, Westfaelische Wilhelms-Universitaet, Corrensstrasse 28/30, Muenster, 48149, Germany;

    Institute of Physical Chemistry, Westfaelische Wilhelms-Universitaet, Corrensstrasse 28/30, Muenster, 48149, Germany;

    Institute of Physical Chemistry, Westfaelische Wilhelms-Universitaet, Corrensstrasse 28/30, Muenster, 48149, Germany;

    Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

    Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

    Institute of Physical Chemistry, Westfaelische Wilhelms-Universitaet, Corrensstrasse 28/30, Muenster, 48149, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号