...
首页> 外文期刊>Energy & environmental science >High-efficiency ITO-free polymer solar cells using highly conductive PEDOTiPSS/surfactant bilayer transparent anodes
【24h】

High-efficiency ITO-free polymer solar cells using highly conductive PEDOTiPSS/surfactant bilayer transparent anodes

机译:使用高导电性PEDOTiPSS /表面活性剂双层透明阳极的高效无ITO聚合物太阳能电池

获取原文
获取原文并翻译 | 示例
           

摘要

By spin-coating a surfactant layer, glycerol monostearate (GMS) atop poly(3,4-ethylene-dioxythiophene):poly(styrene sulfonate) (PEDOTPSS) film, a PEDOTPSS/surfactant bilayer film was prepared facilely for the first time and applied as the transparent anode for high-efficiency ITO-free bulk heterojunction polymer solar cell (BHJ-PSC) devices. A significant improvement of the conductivity of PEDOT:PSS films (from ~1 S cm~(-1) to more than 1000 S cm"1) was achieved by GMS modification and the highest conductivity reaches 1019 S cm~(-1) for Clevios PH 1000 under an optimized spin-coating speed of GMS layer. The Clevios PH 1000/GMS bilayer film exhibits a sheet resistance of 98 O sq~(-1) and a transparency of around 80% in the visible range, which are comparable to those of ITO, fulfilling its function as the transparent anode. The conductivity improvement by GMS modification is proposed to result from the GMS-induced segregation of PSS chains and the conformational change of the conductive PEDOT chains within PEDOT:PSS. While the highly hydrophobic -(CH_2)_(16)CH_3 groups of GMS preferentially interact with the hydrophobic PEDOT of PEDOT:PSS, the highly hydrophilic -COOCH_2-CHOH-CH_2OH groups preferentially interact with the hydrophilic PSS chains with the hydroxyl groups playing an important role on the consequent phase separation between PEDOT and PSS chains. Using Clevios PH 1000/GMS bilayer films as the transparent anodes replacing ITO, high-efficiency ITO-free BHJ-PSC devices based on poly[N-9"-hepta-decanyl-2,7-carbazole-a/t-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole) (PCDTBT) blended with [6,6]-phenyl C_(71)-butyric acid methyl ester (PC_(71)BM) (PCDTBT:PC_(71)BM) and thieno[3,4-b]-thiophene/benzodithiophene (PTB7):PC_(71)BM systems exhibit power conversion efficiencies (PCE) of 5.90% and 7.06%, respectively, which are comparable to the corresponding devices based on the traditional ITO anode.
机译:通过旋涂表面活性剂层,在聚(3,4-乙烯-二氧噻吩):聚(苯乙烯磺酸盐)(PEDOTPSS)膜上面单硬脂酸甘油酯(GMS)薄膜,首次轻松制备PEDOTPSS /表面活性剂双层膜并应用作为高效无ITO体异质结聚合物太阳能电池(BHJ-PSC)器件的透明阳极。通过GMS改性,PEDOT:PSS薄膜的电导率得到了显着提高(从〜1 S cm〜(-1)到1000 S cm-1以上),并且最高导电率达到1019 S cm〜(-1)。 Clevios PH 1000在GMS层的最佳旋涂速度下。Clevios PH 1000 / GMS双层薄膜的表面电阻为98 O sq〜(-1),可见光范围的透明度约为80%,这是可比的提出了通过GMS改性提高电导率的方法,这是由于GMS引起的PSS链偏析和PEDOT:PSS中导电PEDOT链的构象变化所致,而高度疏水GMS的-(CH_2)_(16)CH_3基团优先与PEDOT:PSS的疏水性PEDOT相互作用,高亲水性的-COOCH_2-CHOH-CH_2OH基团优先与亲水性PSS链相互作用,其中羟基在PEDOT:PSS上起重要作用结果相分离PEDOT和PSS链之间的联系。使用Clevios PH 1000 / GMS双层薄膜作为透明阳极替代基于聚[N-9“-庚基-癸基-2,7-咔唑-a / t-5的ITO,高效,无ITO的BHJ-PSC器件, 5-(4',7'-二-2-噻吩基-2',1',3'-苯并噻二唑)(PCDTBT)与[6,6]-苯基C_(71)-丁酸甲酯(PC_( 71)BM)(PCDTBT:PC_(71)BM)和噻吩并[3,4-b]-噻吩/苯并二噻吩(PTB7):PC_(71)BM系统的功率转换效率(PCE)为5.90%和7.06%,分别与基于传统ITO阳极的相应设备相当。

著录项

  • 来源
    《Energy & environmental science》 |2013年第6期|1956-1964|共9页
  • 作者单位

    Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026,China;

    Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology,Guangzhou 510640, China;

    Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology,Guangzhou 510640, China;

    Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026,China;

    Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026,China;

    Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026,China;

    Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology,Guangzhou 510640, China;

    Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology,Guangzhou 510640, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号