首页> 外文期刊>Energy & environmental science >Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches
【24h】

Improving the performance of cobalt-nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches

机译:使用累积方法改善用于超级电容器的钴镍氢氧化物基自支撑电极的性能

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we describe an accumulative approach to move beyond simple incorporation of conductive carbon nanostructures, such as graphene and carbon nanotubes, to improve the performance of metal oxide/hydroxide based electrodes in energy storage applications. In this approach we first synthesize Co-Ni double hydroxides/graphene binary composites through a co-precipitation process. We then assemble these composites into films ( ~6 mg cm~(-1)) by integrating with carbon nanotubes that can be used directly as electrodes. Experimental results indicate that the synergistic contributions from nanotubes, graphene and cobalt substitution enabled electrodes with substantially improved energy storage performance metrics. With 50% Co and 50% Ni {i.e. Co_(0.5)Ni_(0.5)(OH)_2), the composite exhibited a remarkable maximum specific capacitance of 2360 F g~(-1) (360 mA h g~(-1)) at 0.5 A g~(-1) and still maintained a specific capacitance as high as 2030 F g~(-1) at 20 A g~(-1) (~86% retention). More importantly, the double hydroxides exhibited tunable redox behavior that can be controlled by the ratio between cobalt and nickel. These results demonstrate the importance of the rational design of functional composites and the large-scale assembly strategies for fabricating electrodes with improved performance and tunability for energy storage applications.
机译:在本文中,我们描述了一种累积方法,该方法超越了简单地掺入导电碳纳米结构(例如石墨烯和碳纳米管)的范围,从而改善了基于金属氧化物/氢氧化物的电极在储能应用中的性能。在这种方法中,我们首先通过共沉淀过程合成了Co-Ni双氢氧化物/石墨烯二元复合材料。然后,通过与可直接用作电极的碳纳米管集成,将这些复合材料组装成膜(〜6 mg cm〜(-1))。实验结果表明,来自纳米管,石墨烯和钴取代的电极的协同作用使能量存储性能指标大大提高。含50%的钴和50%的镍{ Co_(0.5)Ni_(0.5)(OH)_2)的复合材料在0.5 A g〜(-1)时具有2360 F g〜(-1)(360 mA hg〜(-1))的显着最大比电容。在20 A g〜(-1)时仍保持高达2030 F g〜(-1)的比电容(保留率约86%)。更重要的是,双氢氧化物表现出可调节的氧化还原行为,该行为可通过钴和镍之间的比例来控制。这些结果证明了合理设计功能复合材料的重要性以及大规模装配策略对于制造具有改进的性能和可调性的储能电极的电极。

著录项

  • 来源
    《Energy & environmental science》 |2013年第11期|3314-3321|共8页
  • 作者单位

    Department of Chemistry, Duke University, Durham, North Carolina 27708, USA,Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, USA;

    Department of Chemistry, Duke University, Durham, North Carolina 27708, USA;

    Department of Chemistry, Duke University, Durham, North Carolina 27708, USA,Army Research Office, P.O. Box 12211, Durham, NC 27703, USA;

    Department of Chemistry, Duke University, Durham, North Carolina 27708, USA,Center for the Environmental Implications of NanoTechnology (CEINT), Duke University, Durham, North Carolina 27708, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号