...
首页> 外文期刊>Energy & environmental science >Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms
【24h】

Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms

机译:降低土壤细菌硫的生物膜中的电荷积累和电子转移动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Electroactive bacteria can use a polarized electrode as final electron acceptor, allowing the use of electrochemical techniques for a very accurate quantification of its respiration rate. Biofilm cell respiration has been recently demonstrated to continue after the interruption of electrode polarization since these bacteria can store electrons in the haem groups of exocytoplasmic cytochromes. Interestingly, it has been shown that when the electrode is connected again, stored electrons can be recovered as a current superimposed to the basal steady state current produced by biofilm respiration. This work presents a model for the biofilm-catalysed electron transfer mechanism that reproduces the current profile obtained upon electrode reconnection. The model allows the estimation of kinetic parameters for internalization of the reduced substrate by the cells and the subsequent reduction of cell internal cytochromes, the electron transfer to mediators in the exterior of the cell, charge transport across the biofilm matrix to the electrode through fixed mediators and, finally, the oxidation of cytochromes at the biofilm/electrode interface. Based on these estimates, the distribution of stored charge within the biofilm can also be calculated. The results indicate that the processes involved in electron transfer from acetate to internal cytochromes represent the main limitation to current production, showing that both electron transport through the matrix of cytochromes and interfacial electron transfer are orders of magnitude faster than this process. Stored charge, on the other hand, is an order of magnitude higher inside the cells compared with that in the conductive matrix, suggesting that internal cytochromes are approximately ten times more abundant inside the cells than in the conductive matrix.
机译:电活性细菌可以使用极化电极作为最终电子受体,从而允许使用电化学技术对其呼吸速率进行非常精确的定量。最近已证明,生物膜细胞的呼吸作用在电极极化中断后仍会继续,因为这些细菌可以将电子存储在胞质细胞色素的血红素组中。有趣的是,已经表明,当再次连接电极时,可以将存储的电子作为与生物膜呼吸产生的基本稳态电流叠加的电流来回收。这项工作为生物膜催化的电子转移机制提供了一个模型,该模型可重现电极重新连接时获得的电流分布。该模型可以估算动力学参数,用于细胞还原的底物的内在化和随后的细胞内部细胞色素的还原,电子转移到细胞外部的介体,通过固定的介体将电荷跨过生物膜基质传输到电极的动力学参数。最后,在生物膜/电极界面处细胞色素的氧化。基于这些估计,还可以计算生物膜内存储电荷的分布。结果表明,涉及从乙酸盐到内部细胞色素的电子转移的过程是当前生产的主要限制,表明通过细胞色素基质的电子转移和界面电子转移都比该过程快几个数量级。另一方面,与导电基质中的相比,细胞内部的存储电荷高一个数量级,这表明细胞内的内部细胞色素的含量是导电基质中的大约十倍。

著录项

  • 来源
    《Energy & environmental science》 |2012年第3期|p.6188-6195|共8页
  • 作者单位

    Laboratorio de Bioelectroquimica, Division Corrosion, 1NTEMA (CON1CET), Juan B. Jus to 4302, B7608FDQ Mar del Plata,Argentina;

    Laboratorio de Bioelectroquimica, Division Corrosion, 1NTEMA (CON1CET), Juan B. Jus to 4302, B7608FDQ Mar del Plata,Argentina;

    Laboratorio de Bioelectroquimica, Division Corrosion, 1NTEMA (CON1CET), Juan B. Jus to 4302, B7608FDQ Mar del Plata,Argentina;

    Laboratorio de Bioelectroquimica, Division Corrosion, 1NTEMA (CON1CET), Juan B. Jus to 4302, B7608FDQ Mar del Plata,Argentina;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号