...
首页> 外文期刊>Energy & environmental science >High pressure driven structural and electrochemical modifications in layered lithium transition metal intercalation oxides
【24h】

High pressure driven structural and electrochemical modifications in layered lithium transition metal intercalation oxides

机译:层状锂过渡金属插层氧化物中的高压驱动结构和电化学改性

获取原文
获取原文并翻译 | 示例
           

摘要

High pressure-high temperature (HP/HT) methods are utilized to introduce structural modifications in the layered lithium transition metal oxides LiCoO_2 and Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_2 where x = 0.25 and 0.5. The electrochemical property to structure relationship is investigated combining computational and experimental methods. Both methods agree that the substitution of transition metal ions with Li ions in the layered structure affects the compressibility of the materials. We have identified that following high pressure and high temperature treatment up to 8.0 GPa, LiCoO_2 did not show drastic structural changes, and accordingly the electrochemical properties of the high pressure treated LiCoO_2 remain almost identical to the pristine sample. The high pressure treatment of LiNi_(0.5)Mn_(0.5)O_2 (x = 0.5) caused structural modifications that decreased the layered characteristics of the material inhibiting its electrochemical lithium intercalation. For Li[Li_(1/6)Ni_(1/4)Mn_(7/12)]O_2 more drastic structural modifications are observed following high pressure treatment, including the formation of a second layered phase with increased Li/Ni mixing and a contracted cla lattice parameter ratio. The post-treated Li[Li_(1/6)Ni_(1/4)Mn_(7/12)]O_2 samples display a good electrochemical response, with clear differences compared to the pristine material in the 4.5 voltage region. Pristine and post-treated Li[Li_(1/6)Ni_(1/4)Mn_(7/12)]O_2 deliver capacities upon cycling near 200 mA h g~(-1), even though additional structural modifications are observed in the post-treated material following electrochemical cycling. The results presented underline the flexibility of the structure of Li[Li_(1/6)Ni_(1/4)Mn_(7/12)]O_2 ; a material able to undergo large structural variations without significant negative impacts on the electrochemical performance as seen in LiNi_(0.5)Mn_(0.5)O_2. In that sense, the Li excess materials are superior to LiNi_(0.5)Mn_(0.5)O_2, whose electrochemical characteristics are very sensitive to structural modifications.
机译:利用高压-高温(HP / HT)方法在层状锂过渡金属氧化物LiCoO_2和Li [Ni_xLi_(1 / 3-2x / 3)Mn_(2 / 3-x / 3)] O_2中引入结构修饰其中x = 0.25和0.5。结合计算和实验方法研究了电化学性质与结构的关系。两种方法都同意在层状结构中用Li离子取代过渡金属离子会影响材料的可压缩性。我们已经确定,在经过高达8.0 GPa的高压和高温处理之后,LiCoO_2并未显示出剧烈的结构变化,因此高压处理过的LiCoO_2的电化学性能几乎与原始样品相同。 LiNi_(0.5)Mn_(0.5)O_2(x = 0.5)的高压处理引起结构改性,从而降低了该材料的分层特性,从而抑制了其电化学锂嵌入。对于Li [Li_(1/6)Ni_(1/4)Mn_(7/12)] O_2,在高压处理后观察到更剧烈的结构改性,包括形成第二层相,并增加Li / Ni混合和收缩cla晶格参数比。后处理的Li [Li_(1/6)Ni_(1/4)Mn_(7/12)] O_2样品显示出良好的电化学响应,与4.5电压区域的原始材料相比有明显的差异。原始和后处理的Li [Li_(1/6)Ni_(1/4)Mn_(7/12)] O_2在200 mA hg〜(-1)附近循环时仍可提供容量,即使在电池中观察到了其他结构修饰电化学循环后进行后处理的材料。提出的结果强调了Li [Li_(1/6)Ni_(1/4)Mn_(7/12)] O_2结构的灵活性;如LiNi_(0.5)Mn_(0.5)O_2所示,这种材料能够经受较大的结构变化而对电化学性能没有明显的负面影响。从这个意义上讲,过量的Li材料优于LiNi_(0.5)Mn_(0.5)O_2,后者的电化学特性对结构修饰非常敏感。

著录项

  • 来源
    《Energy & environmental science》 |2012年第3期|p.6214-6224|共11页
  • 作者单位

    Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA;

    Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92037, USA;

    Department of Materials Science and Engineering, University of Florida, Gainesville, FL, 32611, USA,Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92037, USA;

    Laboratorio de Altas Presiones, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;

    Laboratorio de Altas Presiones, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;

    Malta-Consolioder Team, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号