...
首页> 外文期刊>Energy Exploration & Exploitation >Determination of fracture location of double-sided directional fracturing pressure relief for hard roof of large upper goaf-side coal pillars
【24h】

Determination of fracture location of double-sided directional fracturing pressure relief for hard roof of large upper goaf-side coal pillars

机译:上采空侧煤柱坚硬顶板双面定向压裂卸压裂缝位置的确定。

获取原文
获取原文并翻译 | 示例
           

摘要

After mining the upper-goaf side, large coal pillars and part of hard roof exposed above the pillars remain. The hard roof can significantly deform the roadway by transferring high stress through coal pillars to the roadway. This paper reports the use of hydraulic fracturing technology to cut the hard roof on both sides (i.e. the broken roof slides to the goaf) to relieve the pressure. The position of the roof fracture is the key to controlling the pressure relief. The bearing characteristics of the large coal pillars and hard roof are analyzed to establish a mechanical model of the broken-roof sliding instability after directional fracturing and determine the width of the coal pillars that can collapse under maximum overburden load on coal pillars as a reasonable hydraulic fracturing position. The results show that the distance from the mine gateway to the fracture location increases with increasing hard-roof length, coal pillar depth, coal pillar thickness (mining height), and goaf width. In addition, the distance to the mine gateway decreases with increasing coal strength, support of the coal pillar by the anchor rod, cohesive force, and internal friction angle of the coal-rock interface. Engineering tests were applied in coal roadway 5107 of coal seam 5# of the Baidong Coal Mine of the Datong Coal Mine Group. Given the site conditions, a reasonable fracturing length of 8.8 m was obtained. Next, directional hydraulic fracturing was implemented. The comparison of the roof deformation before and after fracturing suggests that this method reduces the local stress concentration in coal pillars, which allows the surrounding rock deformation in roadway 5107 to be controlled.
机译:在开采完上采空区一侧后,保留了较大的煤柱和暴露在柱上方的硬顶部分。坚硬的顶板会通过将高应力通过煤柱传递到巷道,从而使巷道发生严重变形。本文报道了使用水力压裂技术在两侧切割坚硬的顶板(即破碎的顶板滑向采空区)以减轻压力的情况。屋顶裂缝的位置是控制泄压的关键。分析了大型煤柱和坚硬顶板的承载特性,建立了定向压裂后破碎顶板滑动失稳的力学模型,并确定了在最大超载下煤柱可塌陷的煤柱宽度,作为合理的水力。压裂位置。结果表明,从巷道到裂缝位置的距离随着硬顶长度,煤柱深度,煤柱厚度(采矿高度)和采空区宽度的增加而增加。另外,到矿井通道的距离随着煤强度的增加,锚杆对煤柱的支撑,内聚力以及煤岩界面的内摩擦角而减小。在大同煤矿集团白洞煤矿5#煤层煤巷5107上进行了工程试验。在给定的现场条件下,可获得合理的8.8 m压裂长度。接下来,实施定向水力压裂。压裂前后的顶板变形的比较表明,该方法降低了煤柱中的局部应力集中,从而可以控制巷道5107中的围岩变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号