首页> 外文期刊>Energy & fuels >Nonequilibrium Modeling of Hydrate Dynamics in Reservoir
【24h】

Nonequilibrium Modeling of Hydrate Dynamics in Reservoir

机译:水库中水合物动力学的非平衡建模

获取原文
获取原文并翻译 | 示例
           

摘要

Gas hydrates in reservoirs are generally not in thermodynamic equilibrium, and there may be several competing phase transitions involving hydrate. Calculations of hydrate phase transitions based on a modified statistical-mechanical model for hydrate (Kvamme, B.; Tanaka, H. J. Phys. Chan. 199S, 99, 7114-7119) are used to illustrate differences in properties of hydrates formed from different phases. In more general terms, hydrates in porous media are discussed in terms of the Gibbs phase rule. It is argued that phase transitions involving hydrates in porous media can rarely reach any state of equilibrium due to situations of over specified systems with reference to requirements for equilibrium. As a consequence of this, a strategy for nonequilibrium description of hydrates in reservoirs is proposed. This involves the formulation of kinetic expressions for all possible hydrate formations and dissociations as competing pseudoreactions. This involves hydrate formation on a water/carbon dioxide interface, from water solution and from carbon dioxide adsorbed on mineral surfaces, as well as all different possible hydrate dissociation possibilities. The basic idea is that the direction of free energy minimum, under constraints of mass and heat transport, will control the progress of phase transitions in nonequilibrium systems. A new hydrate reservoir simulator based on this concept is introduced in this study. The reservoir simulator is developed from a platform previously developed for carbon dioxide storage in aquifers, RetrasoCodeBright (RCB). The main tools for generating kinetic models have been phase field theory simulations, with thermodynamic properties derived from molecular modeling. The detailed results from these types of simulations provides information on the relative impact of mass transport, heat transport, and thermodynamics of the phase transition, which enable qualified simplifications for implementation into RCB. The primary step was to study the effect of hydrate growth or dissociation with a single kinetic rate on the mechanical properties of the reservoir. Details of the simulator and numerical algorithms are discussed, and relevant examples are shown.
机译:储层中的天然气水合物通常不处于热力学平衡状态,并且可能存在涉及水合物的若干竞争相变。基于改进的水合物统计力学模型(Kvamme,B .; Tanaka,H. J. Phys。Chan。199S,99,7114-7119)的水合物相变计算用于说明不同相形成的水合物的性质差异。更笼统地说,多孔介质中的水合物是根据吉布斯相定律进行讨论的。有人认为,由于考虑到平衡的要求,系统中存在超标情况,因此多孔介质中涉及水合物的相变很少能达到任何平衡状态。因此,提出了一种非平衡描述储层中水合物的策略。这涉及将所有可能的水合物形成和解离的动力学表达公式化为竞争性假反应。这涉及水/二氧化碳界面上的水合物的形成,水溶液和矿物表面吸附的二氧化碳的形成,以及所有不同的水合物分解可能性。基本思想是,在质量和热传输的约束下,最小自由能的方向将控制非平衡系统中相变的进程。本研究介绍了一种基于该概念的新型水合物储层模拟器。储层模拟器是从以前开发的用于将二氧化碳存储在含水层中的平台RetrasoCodeBright(RCB)开发出来的。产生动力学模型的主要工具是相场理论模拟,其热力学性质源自分子模型。这些类型的仿真的详细结果提供了有关传质,传热和相变热力学的相对影响的信息,这些信息可简化实施RCB的过程。首要步骤是研究单一动力学速率下水合物的生长或解离对储层力学性能的影响。讨论了模拟器和数值算法的详细信息,并显示了相关示例。

著录项

  • 来源
    《Energy & fuels》 |2012年第mayajuna期|p.3564-3576|共13页
  • 作者单位

    Department of Physics and Technology, University of Bergen, Allegaten 55, N-S007 Bergen, Norway;

    Department of Physics and Technology, University of Bergen, Allegaten 55, N-S007 Bergen, Norway;

    Department of Physics and Technology, University of Bergen, Allegaten 55, N-S007 Bergen, Norway;

    Department of Physics and Technology, University of Bergen, Allegaten 55, N-S007 Bergen, Norway;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号