...
首页> 外文期刊>Energy >Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines
【24h】

Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines

机译:油底壳热电发电机的设计优化,从内燃机中恢复废热

获取原文
获取原文并翻译 | 示例
           

摘要

Nearly 75% of fuel energy is rejected to the environment and ultimately becomes waste heat in motor vehicles. To recover some of this waste heat and enhance fuel efficiency, thermoelectric energy generators (TEGs) possess high potential. We investigated the feasibility of utilizing TEGs in terms of oil pans to recover waste heat generated in internal combustion engines. Hot oil at the top surface of TEG and air cooling at the bottom create a high thermal gradient for the thermoelectric conversion. An extensive multi-physics simulation framework was introduced to accurately simulate conversion of heat into electricity taking into account thermoelectricity, joule heating, heat conduction and turbulent air cooling. To maximize the thermoelectric power, dimensions and the total number of thermoelectric modules were optimized under different oil pan geometries and driving conditions. Our simulations show that the maximum power density of 5.77 kW m~(-2) is achieved with multi-step oil pan geometry under a 76 °C temperature difference between the hot and cold sides. This power density surpassed those reported for the previous, conventional (exhaust and radiator) thermoelectric applications and indicated that harvesting thermal energy from combustion engines using oil pans is a feasible energy recovery methodology to enhance fuel efficiency in automotive vehicles.
机译:较近75%的燃料能量被拒绝对环境,最终成为机动车的浪费。为了恢复其中一些废热并提高燃料效率,热电能量发生器(TEGS)具有高潜力。我们调查了利用TEG在油锅上利用TEG,以回收内燃机中产生的废热。 TEG顶部表面的热油和底部的空气冷却为热电转换产生高热梯度。引入广泛的多物理仿真框架,以准确地模拟热量转换为电力,考虑到热电,焦耳加热,导热和湍流空气冷却。为了最大化热电功率,尺寸和热电模块的总数在不同的油底壳几何形状和驾驶条件下进行了优化。我们的模拟表明,在热和冷侧的76°C温差下,使用多步油盘几何体实现了5.77kW m〜(2)的最大功率密度。这种功率密度超过了先前的传统(排气和散热器)热电应用的那些报告的那些,并表明使用油平板收集来自燃烧发动机的热能是可行的能量回收方法,以提高汽车车辆的燃油效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号