首页> 外文期刊>Energy >Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology
【24h】

Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology

机译:使用响应面法优化顶燃式气举生物反应器中生物柴油的微藻来源脂质生产

获取原文
获取原文并翻译 | 示例
           

摘要

Microalgae bioreactors that capture industrial carbon dioxide (CO2) emissions to produce lipids for biodiesel are of significant interest. Sun-lit open raceways are generally considered the most economic method for mass cultivation, but the large physical footprint of these shallow systems can limit both industrial site availability and CO2 transfer into the culture medium. To address these issues, a deep top lit only, gas-lift bioreactor to culture microalgae and capture CO2 was designed and investigated. The results show a three times increase in areal biomass and lipid productivities when compared to traditional raceways used in large-scale microalgae production. Operational factors exerting significant effects on areal biomass and lipid productivities were identified through Plackett-Burman experimental design as gas flow rate, feed gas CO2 content, and dispersion height. By employing response surface methodology, models to predict areal biomass and lipid productivities were derived. The resulting desirability function was then applied to obtain the optimal combination of operational parameters that maximize lipid production per unit area occupied by the bioreactor, whilst keeping biomass production low to reduce downstream processing costs. The optimum operational parameters that fulfill the requirements of the optimization function resulted in areal biomass productivity of 32.1 gdwm(-2)d(-1) and areal lipid production of 198.4 gupidm(-2). (C) 2017 Elsevier Ltd. All rights reserved.
机译:捕获工业二氧化碳(CO2)排放以生产生物柴油脂质的微藻生物反应器引起了人们的极大兴趣。阳光普照的开放水道通常被认为是最经济的大规模种植方法,但是这些浅水系统的巨大物理足迹会限制工业场所的可用性和二氧化碳向培养基中的转移。为了解决这些问题,设计并研究了仅深顶照明,气举式生物反应器来培养微藻并捕获CO2。结果表明,与用于大规模微藻生产的传统水道相比,面积生物量和脂质生产率提高了三倍。通过Plackett-Burman实验设计确定了对面积生物量和脂质生产率产生重要影响的操作因素,如气体流速,进料气CO2含量和分散高度。通过采用响应面方法,推导了预测区域生物量和脂质生产率的模型。然后将所得的期望函数应用于获得操作参数的最佳组合,该操作参数可使生物反应器占据的每单位面积的脂质产量最大化,同时保持较低的生物量产量以降低下游加工成本。满足优化功能要求的最佳操作参数导致区域生物量生产力为32.1 gdwm(-2)d(-1),区域脂质产量为198.4 gupidm(-2)。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号