首页> 外文期刊>Engineering Computations >Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity
【24h】

Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity

机译:结构和微观多相材料导热的多尺度并行拓扑优化

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose The optimal material microstructures in pure material design are no longer efficient or optimal when accounting macroscopic structure performance with specific boundary conditions. Therefore, it is important to provide a novel multiscale topology optimization framework to tailor the topology of structure and the material to achieve specific applications. In comparison with porous materials, composites consisting of two or more phase materials are more attractive and advantageous from the perspective of engineering application. This paper aims to provide a novel concurrent topological design of structures and microscopic materials for thermal conductivity involving multi-material topology optimization (material distribution) at the lower scale.Design/methodology/approach In this work, the effective thermal conductivity properties of microscopic three or more phase materials are obtained via homogenization theory, which serves as a bridge of the macrostructure and the periodic material microstructures. The optimization problem, including the topological design of macrostructures and inverse homogenization of microscopic materials, are solved by bi-directional evolutionary structure optimization method.Findings As a result, the presented framework shows high stability during the optimization process and requires little iterations for convergence. A number of interesting and valid macrostructures and material microstructures are obtained in terms of optimal thermal conductive path, which verify the effectiveness of the proposed mutliscale topology optimization method. Numerical examples adequately consider effects of initial guesses of the representative unit cell and of the volume constraints of adopted base materials at the microscopic scale on the final design. The resultant structures at both the scales with clear and distinctive boundary between different phases, making the manufacturing straightforward.Originality/value This paper presents a novel multiscale concurrent topology optimization method for structures and the underlying multi-phase materials for thermal conductivity. The authors have carried out the concurrent multi-phase topology optimization for both 2D and 3D cases, which makes this work distinguished from existing references. In addition, some interesting and efficient multi-phase material microstructures and macrostructures have been obtained in terms of optimal thermal conductive path.
机译:目的当考虑具有特定边界条件的宏观结构性能时,纯材料设计中的最佳材料微观结构不再有效或不是最佳的。因此,重要的是提供新颖的多尺度拓扑优化框架,以定制结构和材料的拓扑以实现特定的应用。与多孔材料相比,由两种或多种相材料组成的复合材料从工程应用的角度来看更具吸引力和优势。本文旨在提供一种新颖的同时进行结构和微观材料导热的拓扑设计,涉及较低规模的多材料拓扑优化(材料分布)。设计/方法/方法在这项工作中,微观三层的有效导热特性通过均质化理论获得了更多或更多的相材料,它们是宏观结构和周期性材料微观结构的桥梁。通过双向演化结构优化方法解决了宏观结构的拓扑设计和微观材料的逆均质化等优化问题。结果,所提出的框架在优化过程中显示出高稳定性,并且几乎不需要迭代即可收敛。根据最佳的导热路径,获得了许多有趣且有效的宏观结构和材料微观结构,这证明了所提出的多尺度拓扑优化方法的有效性。数值示例充分考虑了代表性单位晶胞的初步猜测以及所采用基础材料在微观尺度上的体积约束对最终设计的影响。两种尺度下的最终结构在不同相之间具有清晰而独特的边界,从而使制造变得简单明了。来源/价值本文提出了一种新颖的结构多尺度并发拓扑优化方法,以及用于导热的底层多相材料。作者已经针对2D和3D情况进行了并行多阶段拓扑优化,这使这项工作与现有参考文献有所区别。此外,就最佳的导热路径而言,已经获得了一些有趣且有效的多相材料微观结构和宏观结构。

著录项

  • 来源
    《Engineering Computations》 |2019年第1期|126-146|共21页
  • 作者单位

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha, Hunan, Peoples R China|Joint Ctr Intelligent New Energy Vehicle, Shanghai, Peoples R China;

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha, Hunan, Peoples R China|Joint Ctr Intelligent New Energy Vehicle, Shanghai, Peoples R China;

    North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing, Peoples R China;

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha, Hunan, Peoples R China|Joint Ctr Intelligent New Energy Vehicle, Shanghai, Peoples R China;

    Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha, Hunan, Peoples R China|Joint Ctr Intelligent New Energy Vehicle, Shanghai, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermal conductivity; Inverse homogenization; Multi-material topology optimization; Multiscale concurrent design; Bi-directional evolutionary structural optimization (BESO);

    机译:导热系数;逆均质化;多材料拓扑优化;多尺度并发设计;双向演化结构优化(BESO);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号